The sandwich-type phthalocyanines which possess advantages of high capacity, stable performance, realizable designability, abundant resources and environment friendly, will grow up to be a kind of energy storage material with broad application prospects. Therefore, a novel molecular model of sandwich-type phthalocyanines with multi oxygen-containing substituted groups is constructed. The oxygen-containing groups (carbonyl, nitro and quinonyl) with high electrochemical activity are substituted onto the phthalocyanine conjugated system with stable performance. The stable layered structure was obtained after complexation with rare earth metal ions. The effects of the conjugated groups, central metals, layered structure and the modification technology on the capacity, cycle stability and electrical conductivity of batteries will be studied systematically, to explore the electrochemical reaction mechanism and the relationship between the structure and the performance of sandwich-type phthalocyanines. Through the research of this project, it is expected to achieve the following goals: (1)The multi-active sites and the layered structure of the phthalocyanine ring may achieve high specific capacity; (2)Poor solubility and stable layered structure of phthalocyanine macrocycle system may achieve better cycling stability; (3)Sandwich structure of phthalocyanine conjugated system with good conductivity may be achieved by complexation with rare earth metal. This project is expected to solve generally faced problems of unstable structure, low capacity, poor cycle performance and low conductivity, which will have important theoretical and practical significance for the development of new layered cathode materials of power battery.
稀土络合层状酞菁化合物具有结构稳定、容量高、导电性好、可设计性强等优点,是一类具有广泛应用前景的储能物质。为此,构建多活性基团取代/稀土络合层状酞菁分子模型,将电化学活性高的含氧基团(羰基、硝基、醌基)取代到性能稳定的酞菁共轭体系上,并采用稀土金属离子络合得到稳定的片层结构,系统研究共轭基团、中心金属、层状结构和改性技术对电池容量、循环稳定性能和导电性能的作用规律,探索三明治层状酞菁化合物电化学反应机制,构建有机层状结构与性能之间的构效关系。通过本项目研究以期获得:(1)多取代基团和层状结构的双重嵌/脱锂作用以实现较高的比容量;(2)酞菁大环体系低溶解性和稳定的层状结构以实现较好的循环稳定性能;(3)稀土金属络合的共轭层状结构以实现较好导电性能。本项目研究有望解决当前层状电极材料所普遍面临的结构不稳定、容量不高、循环性能差和电导率低等问题,对发展锂离子电池新型有机电极材料具有重要意义。
大分子酞菁共轭结构化合物具有结构稳定、容量高、导电性好、可设计性强等优点,是一类具有广泛应用前景的储能物质。为此,本项目构建了一系列不同中心金属(Y、La、Eu、Yb)络合的稀土三明治层状结构酞菁化合物、以及在此基础上拓展的大体积树枝状结构、层状结构和框架结构的酞菁化合物,创新性地将它们作为锂离子电池电极材料,探究了周边取代基团、中心络合金属、层状结构、框架结构尺寸、形貌结构等因素对储能性能的影响规律。通过XRD、XPS、IR、SEM、TEM和拉曼光谱等表征手段对电极材料充放电前后的表面微观结构、元素成分及化学态的分析,阐明该类型有机化合物深入的电化学反应机制,构建了一类具有优良储能性能的共轭酞菁化合物的分子模型。通过本项目研究,建立了酞菁化合物的“分子模型构建-合成制备-结构/尺寸调控-形貌调控-储能行为”之间的构效关系。解决了当前含氧有机化合物作为锂离子电池电极材料普遍存在的结构不稳定、容量不高、循环性能差和电导率低等问题,对发展高性能的锂离子电池新型有机电极材料具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
手性三明治型卟啉、酞菁稀土金属配合物的设计、合成、自组装及功能性质研究
三明治型咔咯-酞菁配合物分子材料的设计合成及性质研究
三维三明治共轭稀土卟啉、酞菁配合物功能材料的研究
手性及巨型三明治酞菁稀土配合物及其纳米材料的合成、结构和表征