Rare sugars, owing to their low-calorie properties and specific physiological functions, have shown potential applications in the food, cosmetic, and pharmaceutical industries. Ketose 3-epimerase (KEase) plays an important role in the biological production of rare sugars, which could catalyze the reversible epimerization at the C-3 position between different ketoses. KEases obtained from various organisms show distinguished substrate specificity, however the substrate recognition mechanism is still unknown. In this project, the kinetic parameters, and the structure and energy changes after substrate binding of various KEases will be investigated to identify their substrate specificity. Combining the multiple sequence alignment and computer simulation, the molecular mechanism for substrate recognition and selective catalysis will be also studied. In addition, by applying the site-directed and iterative saturation mutagenesis on residuals around the substrate binding pocket (C-4, C-5, C-6), the substrate-specificity molecular modification of KEase will be carried out for screening mutant enzymes applicable in the food industry. This project will lay the theoretical and practical foundation tailored for understanding the mechanism for substrate recognition and selective catalysis, as well as promoting the development of rare sugar industrial production.
稀有糖具有低能量和特殊的生理功能,在食品、化妆品和医疗制药等领域中具有广泛的应用前景。酮糖3-差向异构酶(KEase)在稀有糖的生物转化中起着十分重要的作用,它可以催化酮糖在C-3位置发生可逆的差向异构化反应。不同微生物来源的KEase显示出不同的底物特异性,然而目前关于KEase的底物特异性识别机制尚未阐明。本项目将研究KEase对不同底物反应动力学、底物结合结构与能量变化,明确不同微生物来源KEase的底物特异性。结合氨基酸序列比对与计算机模拟,揭示底物特异性识别与选择性催化机制;通过对关键位点(C-4、C-5、C-6周围)设计定点突变和迭代饱和突变,实现KEase底物特异性分子改造,筛选适用于食品行业利用的突变体酶。本项目的开展,对完善KEase的底物特异性分子机制、促进稀有糖的产业化发展,具有重要的理论和实践意义。
稀少糖具有低能量和特殊的生理功能,在食品、化妆品和医疗制药等领域中具有广泛的应用前景。D-阿洛酮糖具有高甜度、低能量、降血脂、降血糖等诸多优点,是目前研究最热的稀少糖。酮糖3-差向异构酶(KEase)是催化D-果糖制备D-阿洛酮糖的关键酶制剂。根据最适底物的不同,酮糖3-差向异构酶(KEase)可以分类为D-阿洛酮糖3-差向异构酶(DAEase)、D-塔格糖3-差向异构酶(DTEase)、D-果糖3-差向异构酶(DFEase)以及L-核酮糖3-差向异构酶(LREase)。不同种类的KEase显示出不同的底物特异性,然而目前关于KEase的底物特异性识别机制尚未阐明。在本项目中,我们首先研究了Thermoclostridium caenicola DAEase(Thca-DAEase)、Caballeronia fortuita DTEase(Cafo-DTEase)和Labedella endophytica LREase(Laen-LREase)的酶学性质和底物反应动力学参数,明确了不同种类KEase的底物特异性。发现底物O-1、O-2、O-3周围结合的氨基酸残基涉及金属离子结合与催化反应,完全保守;底物O-4、O-5、O-6周围结合的氨基酸残基涉及底物识别,是非保守的,这种非保守性影响了KEase的底物特异性。基于KEase与底物的分子对接模拟结果,综合考虑酶催化活性中心不同氨基酸官能团的相互作用,选择底物识别相关的O-4、O-5及O-6原子周围(10 Å以内)的非保守氨基酸位点进行理性设计突变,筛选得到Dorea sp. DAEase的双点突变体A38E/G105A对D-果糖的亲和力增加(Km)降低,催化效率提高38.6%,最终实现了其底物特异性分子改造。本项目的开展为KEase催化效率的精确改造提供理论指导,对推动我国稀少糖的产业化发展具有重要的研究意义。.
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
ω-转氨酶对β-酮酸酯底物的识别机制及改造
己酮糖3-差向异构酶的构效关系与分子改造
基于分子改造的酰胺酶底物识别机理研究
米曲霉脂肪酶AOL的底物识别机制及分子改造研究