The vehicle-mounted durability of fuel cell has become a key factor restricting the commercialization of fuel cell vehicle. This project's object is to enhance durability of fuel cell by online monitoring the Electrochemical Impedance Spectroscopy (EIS) which represents fuel cell’s state of health (SOH), analyzing optimal impedance in global operating condition, and exploring optimal control of power switching trajectory in multiple module fuel cell system. This project focuses on two scientific problems. One is how to track mixed signal generated by direct current signal with high amplitude and alternating current with very low amplitude when Electrochemical Impedance Spectroscopy (EIS) is measured. The other one is how to design optimal switching trajectory under vehicle's operational condition in multiple module fuel cell system. The main research contents are as follows. Firstly, dynamic phasor model predictive control of DC/DC converter is studied to track mixed load's direct current signal and alternating current signal using by EIS test accurately and to obtain EIS. Secondly, optimal impedance map in different current and SOH is obtained and to guide the design of power splitting by using multiple parametric programming. At last, energy transfer and state switching law is analyzed in every operational condition. Optimal control law of power switching trajectory in multiple module fuel cell system is designed by using inverse parametric programming. Research results will provide theory and technical methods to drive the large-scale commercialization of fuel cell vehicle.
车载工况下耐久性差是燃料电池汽车难以大规模产业化的重要因素之一,本项目以提高燃料电池耐久性为宗旨,检测表征燃料电池健康状态的电化学阻抗谱(EIS),分析车载工况下最优阻抗,研究基于最优阻抗的多模块燃料电池系统功率切换轨迹最优控制。围绕在线检测EIS时如何精确跟踪大幅值直流与微弱交流的合成信号以及车载复杂工况、多约束情况下如何确定系统功率分配的最优切换轨迹两个关键科学问题,主要研究:1)以燃料电池输出电流精确跟踪负载直流与EIS检测用交流的叠加信号为目标,研究DC/DC动态相量模型预测控制,实现EIS在线检测;2)采用多参数规划方法,求解不同工况和健康状态下最优燃料电池阻抗MAP图,为功率优化分配提供依据;3)分析各种工况下系统能量传递与状态切换规律,采用逆参数规划方法,设计多模块燃料电池功率切换轨迹最优控制律。研究结果将为燃料电池汽车大规模应用提供理论和技术基础。
车载工况下耐久性差是燃料电池汽车难以大规模产业化的重要因素之一,本项目以提高燃料电池耐久性为宗旨,检测表征燃料电池健康状态的电化学阻抗谱(EIS),分析车载工况下最优阻抗,研究基于最优阻抗的多模块燃料电池系统功率切换轨迹最优控制。围绕在线检测EIS时如何精确跟踪大幅值直流与微弱交流的合成信号以及车载复杂工况、多约束情况下如何确定系统功率分配的最优切换轨迹两个关键科学问题,主要研究:1)以燃料电池输出电流精确跟踪负载直流与EIS检测用交流的叠加信号为目标,研究了DC/DC自适应无源控制和模型预测控制策略;2)采用采用双DSP的硬件结构,进行燃料电池EIS在线检测研究,提高了EIS检测精度;3)分析各种工况下系统能量传递与状态切换规律,进行燃料电池能量管理策略研究,包括多模块燃料电池混合动力系统功率分配策略、燃料电池ADHDP能量管理策略以及基于功率预测的混合动力系统能量管理策略;4)基于FPGA的基于FPGA的燃料电池HIL仿真实验平台研制。研究结果将为燃料电池汽车大规模应用提供理论和技术基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
粗颗粒土的静止土压力系数非线性分析与计算方法
基于LASSO-SVMR模型城市生活需水量的预测
拥堵路网交通流均衡分配模型
低轨卫星通信信道分配策略
面向车载燃料电池耐久性的电电混合动力系统关键问题研究
基于最佳过氧比的机车燃料电池系统净输出功率最优控制方法研究
燃料电池电动汽车动力系统的多模型切换控制研究
面向车用燃料电池耐久性的网络分层控制研究