In order to solve the drawback of the current polarization navigation systems' inability to autonomously position, this project intends to develop a novel biomimetic polarized skylight sensor for the autonomous positioning and navigation by imitating the super-sensitive mechanism of polarized light and the amazing navigation abilities of animals based on the comprehensive utilizations of the skylight polarization and other informations. The spatial and temporal specificity of the skylignt polarization pattern will be studied. On the basis of the Rayleigh scattering theory, the Polarized SkylightNavigation and Positioning (PSNP) model reflecting the relational mapping between the multi-source informations and the latitude, longitude and direction of the carrier will be established by fusing the skylignt polarization pattern, time and other informations. By imitating the polarized light super-sensitive mechanisms of the insects' compound eyes, the polarized light sensitive micro-nano device which is the core component of the positioning and navigation sensor will be designed based on the Finite Difference Time Domain (FDTD) algorithm. And the cross-scale fabrication process combining the nanoimprint and micro processing technologies for the biomimetic device will be studied. The Biomimetic Hierarchical Clustering Model of Polarization Visual Information (BCMPVI) will be established and the autonomy measurement of the latitude, longitude and direction will be implemented in real time based on the BCMPVI and the PSNP model. Finally, a biomimetic positioning and navigation sensor which has the advantage of the autonomy, miniaturization and no cumulative error will be developed and applied to determine the location and direction of the carrier in real-time.
针对目前偏振导航系统无法实现自主地理定位的不足,本项目拟模仿动物综合利用偏振光等多源信息进行导航的奇异能力及超强偏振光敏感机理,研发一种新型仿生天空偏振光自主定位导航传感器。探索天空偏振光分布模式的时空特异性规律,基于Rayleigh散射理论,融合天空偏振光分布模式及时间等信息,建立反映多源信息与载体经纬度及航向间映射关系的天空偏振光定位导航模型;模仿昆虫超强偏振光敏感机理,采用时域有限差分方法完成传感器核心部件——仿昆虫复眼微纳偏振光敏感器件的设计,并研究结合纳米压印与微加工工艺的跨尺度制作工艺,实现仿生器件的集成制作;研究并建立仿生偏振视觉信息层次聚类模型,结合定位导航模型,实现传感器的自主实时经纬度与航向求解,最终研制出具有自主化、微型化及无累积误差等优点,能够实时确定地理位置及航向的新型仿生自主定位导航传感器。
针对目前偏振导航系统无法实现自主地理定位的不足,本项目受到鸟类及蝙蝠综合利用偏振光及地磁信息进行导航的奇异能力及昆虫复眼DRA区域超强偏振光敏感特性的启示,通过模仿动物综合利用偏振光等多源信息进行导航的奇异能力及超强偏振光敏感机理,研发了一种新型仿生天空偏振光自主定位导航传感器。项目围绕自主定位导航传感器的相关关键技术,在导航理论模型的建立、全天空偏振模式观测与规律研究、仿生微纳偏振光敏感器件的设计及制作、定位导航传感器设计、样机搭建及导航定位实验等方面开展了研究工作,使我们掌握了复杂大气成分对天空光偏振特性的影响规律,建立了反映多源信息与载体经纬度及航向间映射关系的天空偏振光定位导航模型,掌握了定位导航模型误差影响规律,完成了仿生微纳偏振光敏感器件亚波长金属光栅结构设计,掌握了仿昆虫偏振小眼的跨尺度结构集成制造方法,建立了仿生偏振视觉信息模型,实现了昆虫强鲁棒性及高灵敏度偏振视觉功能,完成了传感器样机硬件及软件设计,并最终开发出全自主、高集成度新型导航定位传感器,其体积小于15×15×15 cm3,重量小于2.5 kg,经纬度定位精度及航向测量精度优于±0.5°,时间漂移误差小于0.001°/h。该传感器与传统偏振导航系统相比,可实现全自主化实时定位这一重要功能,与现有天文导航定位系统相比,项目拟开发系统具有体积小、重量轻及成本低等优点,可为地面、水面及飞行载具提供一种新颖的自主定位及导航手段。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
上转换纳米材料在光动力疗法中的研究进展
自组装短肽SciobioⅡ对关节软骨损伤修复过程的探究
拉应力下碳纳米管增强高分子基复合材料的应力分布
集成式仿生偏振光自主定位导航传感器系统研究
仿昆虫偏振光导航定位原理的微纳传感器关键理论技术研究
全天域仿生复眼偏振光自主导航机理研究
基于仿生偏振光的UCAV自主精确导航及多源、异步信息融合方法研究