There are multi-vibration source and wider vibration band, mutual coupling between helicopter rotor transmission system and structure of gearbox. It presents the strong coupling characteristics between Engine/rotor/tail wing external variable load and various internal incentive as well as the flexible supporting. The system transient dynamic characteristics and dynamic response are very complicated. It has much more resonance points and will be easier lead to the structural failure in the practical engineering problems. For the key scientific problems of multi-source excitation mechanism, the rigid-flexible coupling transient dynamics, and the transient dynamic behavior mechanism of the helicopter main transmission system, the theoretical and experimental study on the rigid-flexible coupling transient dynamics and evolution mechanism under multi-source excitation will be carried on in this project. The mathematical model of the multi-source excitation for helicopter rotor transmission system will be represented. Typical flight conditions and the multi-source excitation rotor dynamic interaction mechanism of the transmission system and the associated system will be revealed. Considering shear deformation influence and the characteristics of the multi-point flexible supporting, a coupling dynamics modeling method for helicopter transmission drive system is put forward. A non-inertial system within the coupling dynamic model will be established. The coupling transient dynamics behavior of helicopter transmission system under multi-source excitation will be studied and the generation mechanism of transient dynamic behavior under different load and design parameters of the transmission system will be revealed. The effective optimization design theory and method on avoiding resonance, to reduce the rigid impact and reduce vibration dynamics for the key components will be put forward. It has an important theoretical and engineering value for master the independent intellectual property rights of high-performance helicopter main drive system design technology, as well as the innovative design of helicopter transmission system and dynamic performance optimization, system security and reliable operation under the multi-source excitation.
直升机主传动系统激振源多且频带宽,发动机/旋翼/尾翼的外部变载荷激励及各种内部激励和柔性支撑之间呈现强耦合特征,系统瞬时动力学特性与动态响应异常复杂,传动系统振动和机匣结构间相互耦合、共振点多,极易引发结构失效。本项目针对直升机主传动系统的多源激励机制及瞬态动力学行为机理的关键科学难题开展理论与实验研究,建立非惯性系内直升机主传动系统刚柔耦合动力学模型,分析典型飞行状态与多源激励下直升机主传动系统刚柔耦合瞬态动力学行为,研究直升机主传动系统的时频特性与振动能量的传递特性随支撑结构、设计参数及典型飞行状态的变化规律,揭示多源激励下直升机主传动系统瞬态动力学行为机理,提出有效规避共振、减小啮合冲击及系统振动的动力学性能提升方法。该研究对掌握自主知识产权的高性能直升机主传动系统设计技术,实现直升机主传动系统的创新设计与动力学性能优化、系统安全与可靠运行有着重要的理论和工程价值。
由于直升机主减传动系统结构特征与载荷特征的复杂性,决定了其瞬态动力学行为机理研究的复杂性。基于惯性系下利用振动角位移和振动平移位移作为广义坐标来建立齿轮动力学模型,不适用于非惯性系下直升机主减传动系统刚-柔耦合瞬态动力学行为研究;对直升机主减传动系统与多源变负载激励之间的耦合动态特性及瞬态动力学行为产生的深层次机理未能全面认识,缺乏有效规避共振、减小齿轮啮合冲击及降低系统振动的动力学性能提升方法。.本项目计及基础空间运动产生的惯性力、惯性力矩等附加效应,建立了非惯性系下定轴齿轮传动系统与行星齿轮传动系统动力学模型;提出了计及结构柔性、节点有限元法与超单元缩聚技术相结合的复杂空间夹角下齿轮-轴系-轴承-机匣整体耦合的动力学建模通用方法,形成了基于试验模态分析-大规模有限元-子结构缩聚的直升机主减速器复杂异型构件动力学建模及精度评价方法,解决了复杂异型机匣、不规则轴系等构件兼顾模型精度与计算效率的动力学建模问题;提出了包括结构调频优化、轴系结构优化、齿轮宏观参数与微观参数优化等直升机主减传动系统动力学性能提升方法。研究成果为直升机、航空发动机等基础机动飞行环境下齿轮、轴承、轴系等构件的动力学性能优化设计、疲劳强度与耐久性研究以及相关标准修订提供分析模型和数据参考,具有重要的科学意义。.发表期刊论文19篇,本行业知名国际会议宣读论文7篇。其中Nonlinear Dynamics、Mechanism and Machine Theory、JSV、ASME会刊、机械工程学报等本领域顶级期刊11篇,中国机械工程学会优秀论文奖1篇;授权中国发明专利5项、美国发明专利1项,公开中国发明专利8项,获权软件著作权5项;获中国机械工业科学技术奖一等奖1项。培养博士3人,硕士16人。其中,重庆市优秀博士学位论文获得者1人次、重庆市优秀硕士学位论文获得者1人次。获批重庆市“巴渝学者”特聘教授、重庆市英才计划“创新领军人才”等人才称号2人次;获批重庆市高校创新团队等2个。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
基于多模态信息特征融合的犯罪预测算法研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
多源激励下超深立井多绳提升绳弦碰撞行为及主动控制研究
时滞影响下轧机主传动系统非线性机电耦合动力学
多源激励下增压输送管路系统失稳机理与动力学特性研究
航空发动机主轴轴承局部故障激励机理与特征提取方法研究