Optical modulator based on new functional materials is an ever rising hot research topic. This research project proposes to a new type of optical modulation structure based on graphene/ Molybdenum disulfide (MoS2) heterostructure instead, by taking the combined electronic and optical advantages of both grahene and MoS2. It will fulfill the requirement of new optical modulation technology with high modulation speed and high extinction ratio for on-chip optical interconnection. This project targets at tackling the fundamental scientific problems (high modulation speed and high extinction ratio). By considering the optoelectronic property of graphene, MoS2 and the heterostructure, and the design structure of the integrated optical modulator as the basic part of the scientific problems, we can establish a theoretical model on fine-tune the optoelectronic response of graphene, MoS2 and the heterostructure materials, starting from how to tailor the optoelectronic property of graphene, MoS2 and the heterostructure materials. Guided by the theoretical model, we will 1) study on how to fabricate graphene,MoS2 and the heterostructure materials with excellent optoelectronic property,particularly MoS2 and the heterostructure materials with remarkably high electro-optical absorption; 2) Study on how to control the fabrication of graphene, MoS2 and the heterostructure,characterize the physical property of graphene, MoS2 and the heterostructure and develop an advanced transferring technology of graphene, MoS2 and the heterostructure; 3)Study on how to design optical modulator structures that can well match with the corresponding material properties: high electro-optical absorption, leading to break down the technology's barriers on graphene optical modulator with high modulation speed and large extinction ratio. Consequently, we can demonstrate a prototype graphene/MoS2 heterostructure optical modulator with fast modulation speed (40 Gb/s) and large extinction ratio (10 dB), and publish high-quality papers and acquire independent intellectual property rights (copyrights, patents, and the like). The central scientific questions that this project will answer concern on how to fine-tune the optoelectronic property of graphene, MoS2 and the heterostructure materials and enable the highly efficient mutual interaction among microwave and light wave within integrated optics components, which are also general problems among optoelectronic devices based on high-speed optoelectronic integration. The research achievement out of this project will definitely promote the development of these related fields.
基于新型功能材料光调制器是新兴研究热点。本项目提出一种基于石墨烯/类硫化钼异质结的新型光调制器结构,充分发挥石墨烯和类硫化钼异质结材料在电子和光学特性上各自的优势,实现适合片上光互连的高速和高消光比新型光调制技术。项目以石墨烯、类硫化钼及其异质结材料电光特性和光调制集成结构作为科学问题研究的载体,从材料电光特性的调控方法出发,建立材料电光特性精细调控模型;然后研究电光特性出色的石墨烯/类硫化钼异质结材料,研究电致光吸收系数高的材料;研究材料的制备、表征及转移技术;研究与材料相对应的电致光吸收调制结构,掌握实现高速和高消光比的光调制关键技术,研制出调制速率大于40Gb/s、消光比优于10dB的光调制原型器件,发表高水平论文,取得发明专利。要解决的科学问题:材料电光特性的精细调控和集成器件中的微波与光波高效作用,是光电子器件和高速光电子集成的普适性问题,项目的开展将促进这些领域发展。
基于新型功能材料的高速光调制器是新型的研究热点。本项目主要研究石墨烯/类硫化钼异质结材料的电光特性和调控方法,二维材料及异质结的大规模、高质量的可控制备技术、表征和转移技术。同时在调制器的结构和石墨烯/类硫化钼异质结光调制器的制备方面进行了相关的研究。最终获得了最佳的结构工艺参数,并制备和测试了原型器件。通过项目的实施,在理论和实验上取得了一系列重要成果。在理论研究方面,提出并验证了几种调制器的结构,包括偏振无关的石墨烯光调制器、基于杂化波导的石墨烯光调制器、光纤型调制器以及相位调制器等。在实验方面,主要研究了石墨烯-金属接触质量工艺的研究,使得器件的接触电阻显著降低。在调制器的制备上,对集总电极和行波电极分别进行了研究。并对调制器的加工工艺进行了研究,获得了最佳的工艺参数。除了对石墨烯和类硫化钼材料及器件进行相应研究外,项目还对新型的二维材料的制备和性质进行了研究,并根据这些材料的光电特性,设计和开发了一系列相应的应用。在项目执行期间,发表高水平SCI论文超过200篇,其中高被引论文21篇,热点论文5篇,申请国家和国际专利30项,已授权19项。共培养了硕士博士15人,博士后18人。共计16人获得了各类国家级、省部级的项目资助。其中一人获得广东省杰青人才称号。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
感应不均匀介质的琼斯矩阵
基于混合优化方法的大口径主镜设计
多酸基硫化态催化剂的加氢脱硫和电解水析氢应用
基于抚育间伐效应的红松人工林枝条密度模型
基于硅-石墨烯复合结构的高速空间光调制器
石墨烯/二硫化钼范德华异质结耦合的钙钛矿太阳电池
原位可控制备基于石墨烯-二硫化钼原子尺度的异质结及其光电性质的研究
基于石墨烯的光调制器关键技术的研究