Low-temperature micro-displacement actuator is the key precision machinery parts in the construction of large-aperture astronomical telescope. The background of this project is to solve the application of low-temperature micro-displacement actuator in the polar terahertz astronomical telescope. The goal of this project is to improve the movement precision of the actuator and the ability of anti-ice/frost under the complicated working condition. Basic theory and key technology of low-temperature micro-displacement actuator is carried out in this project. The project builds the friction/wear simulation model of graphene coating on the surface of the metal, analyses the friction behavior of graphene coating on the surface of the metal and reveals the mechanism of graphene coating’s anti-friction/wear. Based on the low-temperature movement characteristics theory model of micro-displacement actuator, this project analyses the movement characteristics and movement rules and carries out the basic theory research of micro-displacement actuator’s anti-ice/frost. This project also puts forward the technical measures to realize the inhibition of water condensation on the surface of the actuator and establishes a micro-displacement actuator low-temperature movement rules verification platform. Moreover, this project analyses the efficiency of graphene coating and optimizes control strategy of parallel driven micro-displacement actuator. Finally, the research realizes the system property verification of micro-displacement actuator and split mirror’s entire movement precision. The research of the project will provide necessary theoretical basis and technical basis to develop micro-displacement actuator which will be used in Antarctic astronomical telescope and have important theoretical significance and practical value.
低温微位移促动器是极端台址大口径天文望远镜建设的关键精密机械部件。本项目以解决极地太赫兹天文望远镜低温微位移促动器的应用为背景,以提高促动器复杂工况条件下的运动精度和防覆冰、防覆霜能力为目标,开展低温微位移促动器基础理论及关键技术的研究。项目将建立石墨烯涂覆金属构件表面的摩擦/磨损仿真模型,分析石墨烯涂覆金属构件表面的摩擦行为,揭示石墨烯涂覆的减摩/耐磨机制;以微位移促动器的低温运动特性理论模型为依据,解析其运动特性和运动规律;开展微位移促动器的防冰、防霜基础理论研究,提出实现抑制水介质在促动器表面凝结的技术措施;建立微位移促动器的低温运动规律验证平台,分析石墨烯涂覆的作用效能,优化并联驱动微位移促动器的控制策略,实现微位移促动器与拼接镜面整体运动精度的系统性能验证。本项目的研究将为研制南极地区太赫兹天文望远镜的微位移促动器提供必要的理论基础和技术依据,具有重要的理论意义和实用价值。
本项目以微位移促动器为应用对象,开展了石墨烯摩擦磨损、促动器运动规律、表面疏冰等基础研究。项目确定了适合Gr/Fe体系的分子动力学建模势函数参数,建立了石墨烯的压痕仿真模型,揭示了石墨烯对基底损伤抑制的内在机理。项目采用石墨烯涂层的刻划仿真,探究了石墨烯涂层减少磨屑形成的作用机制,发现了石墨烯诱导的位错湮灭现象。项目建立了石墨烯吸附不锈钢微结构表面的仿真模型,分析了石墨烯在微结构表面的吸附状态,揭示了基底微结构形貌对石墨烯吸附力的影响规律,提出石墨烯表面的摩擦力和吸附行为存在层数依赖性。项目采用刚柔耦合的仿真模型,分析了螺杆柔性化后促动器的位移、速度和力矩输出特性,并完成了微位移促动器的低温运动测试实验。项目分析了石墨烯的润湿性和氧化铝表面的吸附特性,研究了微结构的疏冰性。项目采用化学气相沉积方法制备了石墨烯,并实现了石墨烯的转移;开展了石墨烯涂覆表面的摩擦特性测试实验,获得了表面粗糙度、石墨烯层数等参数对构件表面摩擦特性的影响规律,为石墨烯涂覆微位移促动器的工程应用提供了理论依据。项目在国内外期刊上发表学术论文22篇,其中SCI论文14篇、EI论文19篇。在国际学术会议上发表论文4篇,申请国家发明专利2项。相关研究成果入选《一万个科学难题:制造科学卷》。项目培养博士毕业生1人,硕士生毕业3人,在读博士生3人,硕士生1人。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
适用于带中段并联电抗器的电缆线路的参数识别纵联保护新原理
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
基于图卷积网络的归纳式微博谣言检测新方法
石墨烯锁模光纤激光器关键技术研究
基于单层多孔介质膜涂覆微纳光纤的微污染物传感技术研究
超磁致伸缩驱动超微量胶体非接触精密涂覆关键技术研究
Villari效应超磁致伸缩力传感微位移执行器关键技术研究