In view of the existing dispensing technology cannot meet the requirements of ultra-micro volume and high precision in micro devices precision manufacturing, this project put forward a non contact precision ultra-micro adhesive dispensing method which is based on magnetostrictive effect and uses the unique advantages of giant magnetostrictive materials in precision micro displacement drive. In this method, the precision ultra-micro adhesive dispensing is realized by using the magnetostrictive deformation to drive adhesive movement precisely, and combination with the accurate control model and reasonable working parameters. Based on the research achievements of magnetostrictive materials and its application, the key technology of non contact precision ultra-micro adhesive dispensing driven by giant magnetostrictive materials is studied. Firstly, working mechanism of non contact precision ultra-micro adhesive dispensing process driven by giant magnetostrictive materials and main factors affecting adhesive movement are thorough studied. Based on this, the ultra-micro precision adhesive dispensing system is designed, suppression or compensation method of thermal deformation error is proposed, and the parameter optimization method of main function parts is studied. A multiple physical fields coupling mathematical model for adhesive dispensing driven and dispensing process is established. Moreover, the corresponding precise model solving methods are studied. A prototype of ultra-micro precision adhesive dispensing system is developed. Working parameter configuration rule for ultra-micro adhesive dispensing is proposed, and pL level dispensing of different viscosity adhesive is realized finally. Research results will provide a new ultra-micro precision adhesive dispensing technology theory and new way for micro precision manufacturing. It also brings a new issue for the field of giant magnetostrictive materials.
针对现有点胶技术不能满足微器件精密制造的超微量高精度胶滴要求,本项目利用超磁致伸缩材料在精密微位移驱动中独有的优势,提出一种以磁致伸缩效应为基础,通过磁致伸缩形变精确驱动胶体运动,结合准确的控制模型及合理工作参数,实现超微量胶滴精密分配的方法。基于已取得的磁致伸缩材料特性及应用的研究成果,本课题围绕超磁致伸缩驱动超微量胶体非接触精密涂覆关键技术展开研究。首先,深入研究超磁致伸缩驱动非接触点胶的工作机理及影响胶体运动的主要因素;基于此,设计超微量精密胶体涂覆系统,提出热形变误差抑制与补偿方法,研究主要功能部件的参数优化方法;建立描述胶体驱动与分配过程的多物理场耦合数学模型,研究精确的数值求解方法;研制超微量胶体精密涂覆样机,形成超微量点胶工作参数配置规律,完成不同黏度胶体的pL级分配。研究成果将为微精制造的超微量精密点胶技术提供一种新的理论和途径,也将为超磁致伸缩材料研究领域带来新课题。
随着机械电子产品及系统的微型化与多样化,对胶体涂覆性能提出了尤为苛刻的要求,亟需与微纳米级零件尺寸相匹配的微小胶滴精准可靠分配分离技术,以实现精微装配过程中的超微量胶体的高精确度、高一致性的涂覆。针对精微装配制造对超微量胶滴及高精度点胶技术的要求,本项目提出一种利用超磁致伸缩材料的微位移形变驱动胶液运动的超微量精密点胶方法。建立了描述胶体驱动与分配过程的多物理场耦合数学模型,揭示了决定点胶结果的关键结构参数、物理参数及驱动参数;提出了磁致伸缩精密驱动部件设计方法及热补偿方法,形成了超微量精密胶体涂覆系统主要功能部件的参数计算域优化方法;明确了影响点胶性能及胶滴分配水平的主要因素,揭示了超微量点胶过程的微观力作用及能量变化机制,得到了工作参数的配置方法;研制的超微量点胶系统可实现对多种黏度胶液的pL-fL分辨率的分配(1fL=10^-3pL=10^-9μL)。
{{i.achievement_title}}
数据更新时间:2023-05-31
奥希替尼治疗非小细胞肺癌患者的耐药机制研究进展
萃取过程中微观到宏观的多尺度超分子组装 --离子液体的特异性功能
长链基因间非编码RNA 00681竞争性结合miR-16促进黑素瘤细胞侵袭和迁移
非牛顿流体剪切稀化特性的分子动力学模拟
具有随机多跳时变时延的多航天器协同编队姿态一致性
超磁致伸缩自传感驱动非圆柱孔精密镗削新方法及其关键技术研究
超磁致伸缩非圆型面精密加工系统关键理论及其应用研究
超磁致伸缩执行器驱动的射流伺服阀关键技术研究
超磁致伸缩功率超声换能器关键技术研究