The assembling of nano-carbons like carbon nanotube and graphene is the key process to fabricate their macroscopic continuous fibers, which have attracted great attention during the development of nanomaterials. Different from the traditional fibers, the assembled nano-carbon fibers exhibit extremely large interfacial contacts between the nanometer-sized structures. These interfaces play important roles in determining the fiber's mechanical, electrical, and thermal properties, and are also crucial for developing the multifunctionality such as the electro-mechanical actuation where energy conversion takes place at the interfaces. In order to further explore the performance of the assembled nano-carbon fibers, it is necessary to functionalize the surface of nano-carbon. However, the surface treatment is only allowed on the outer shell of the fiber once the assembly is finished. This means, the assembling process should be revised to be applicable for the functionalized nano-carbons. In this study, we will perform various methods to modify the atomic structure of nano-carbons, and then develop the fiber assembling process to fabricate new fibers which contain the functionalized nanostructures. By using the coupling tests on the mechanical, electrical, and thermal responses, the effect of the interface structure on the energy conversion and transfer will be analyzed. Based on the study on the mechanism between the surface functionalization and the electro-mechanical actuation, we hope the present research can be extended to develop other multifunctional nanomaterials.
纤维化过程是将碳纳米管及石墨烯等纳米碳结构组装形成连续纤维材料的关键过程,是当前纳米材料发展的重要内容之一。不同于传统纤维材料,纳米碳组装纤维中存在丰富的界面结构,这些界面结构在纤维的力、电、热性能以及多功能特性中起到重要作用。由于经过纤维化过程之后进行官能化修饰仅能影响到纤维的外层纳米碳结构,为获得具有不同表面官能化程度的纳米碳组装纤维,需要针对不同修饰程度的纳米碳开展纤维化研究。此外,以电机驱动为典型的能量转换特性也取决于纳米碳的表面化修饰以及受此影响的界面结合作用。为此,本项目首先对纳米碳结构进行表面官能化修饰,研究不同修饰程度对纤维化过程的影响,着重分析纳米碳结构间不同界面结构与应力传递、电荷输运以及能量转换的关联特性,探索界面特性对纤维力、电、热性能以及电-机驱动特性的作用机制,发展新型多功能纳米碳组装纤维材料。
纤维化过程是将碳纳米管及石墨烯等纳米碳结构组装形成连续纤维材料的关键过程,是当前纳米材料发展的重要内容之一。纳米碳组装纤维中存在丰富的界面结构在纤维的力、电、热性能以及多功能特性中起到重要作用。为获得具有不同表面官能化程度的纳米碳组装纤维,需要针对不同修饰程度的纳米碳开展纤维化研究。以电机驱动为典型的能量转换特性也取决于纳米碳的表面化修饰以及受此影响的界面结合作用。本项目首先对纳米碳结构进行表面官能化修饰,研究不同修饰程度对纤维化过程的影响,着重分析纳米碳结构间不同界面结构与应力传递、电荷输运以及能量转换的关联特性,进而探索界面特性对纤维力、电、热性能以及电-机驱动特性的作用机制,发展新型多功能纳米碳组装纤维材料。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
硅表面图形化掺杂及其对纳米结构自组装的影响
表面界面特性对碳薄膜摩擦行为的影响机制
金属材料表面纳米化对离子注入及表面改性的影响
铑催化的碳-碳键活化官能化研究