The traditional method for face gear manufacturing is based on the simulation that the face gear meshes with the pinion, which causes that the cutter is not universal and the specially sophisticated machine tool is required, hence the promotion of the application of the face gear drive is greatly restricted. The application of a tool with straight cutting edge in face gear manufacturing on the bevel gear machine tool is the effective way to avoid the traditional obstacle. The previous researching demonstrates that: the face gear generated by the tool with straight cutting edge meshing with the standard involute pinion presents the "quasi conjugate" meshing performance, the meshing performance and surface precision could be further improved. This project is plan to further investigate the motion rule of the face gear generated by the tool with straight cutting edge, tooth surface structure property and its pre-controlled meshing performance through the theory and method of spatial meshing theory, higher ratio of roll and motion, tooth meshing contact analysis, active ease-off topology modification of tooth surface, etc. Under the condition of the allowable freedom of the machine tool the topics that focus on dealing with are: (1) To minimize the deviation of the generated tooth surface by adjusting and correcting machining tool settings and cutter parameters; (2) To improve the bearing capacity of the face gear drive by re-constructing the tooth surface based on the method of conjugating and active ease-off topology modification. This project aims at the establishing and experimental verifying the synthesis method of the machine tool motion rule and tooth surface design method of the face gear drive with high bearing capacity. Thereby the theoretical foundation for face gear designing and manufacturing based on the tool with straight cutting edge will be established, and a new method will be provided for face gear manufacturing that effectively reduce the research and development costs of the machine tool and the cutter.
面齿轮的传统制造方法是基于小轮与其啮合的模拟,导致刀具不能通用且需要复杂制造装备,极大地限制了面齿轮传动的推广应用。用直刃刀具在锥齿轮机床上加工面齿轮是绕开该传统障碍的有效途径。前期研究表明:由此加工的面齿轮与标准渐开线小轮啮合呈现“准共轭”特性,啮合性能与齿面精度还可继续提高。本项目计划进一步采用空间啮合理论、高阶滚比与运动法、轮齿啮合分析、齿面主动拓扑修形设计等原理和方法研究直刃刀具展成面齿轮的运动规律、齿面结构特征及其啮合性能的预控。在机床允许的自由度条件下着重解决:(1)调整和修正加工、刀具参数以最小化被加工齿面的偏差;(2)基于共轭法和齿面主动拓扑修形设计重构齿面,提高面齿轮传动的承载能力。旨在建立并由实验验证机床运动规律的综合方法和高承载能力面齿轮传动的齿面设计方法。从而奠定基于直刃刀具的面齿轮设计、加工的理论基础,为面齿轮的加工提供一种新的方法并有效降低机床与刀具的研发成本。
受限于面齿轮的传统制造方法基于共轭理论,致使面齿轮的加工刀具、机床及制造过程非常复杂,追求简单、高效和通用加工技术已成为面齿轮加工技术的重要发展方向。.受格里森Coniface面齿轮的制造技术的启发,本项目研究了产形线为直线的直刃刀具制造面齿轮的方法,使刀具在运动的过程中,无限逼近与面齿轮啮合的假想刀具的渐开线,包括两种制造方法,其一为线接触的单参数包络法;其二为点接触的双参数包络法,分别阐述了这两种加工方法的啮合原理、设计了刀具的产形平面和锥面,确定了刀具、假想产形轮和被加工齿面的切触关系,提出了刀具运动规律及其运动参数的求解方法,建立了被加工齿面的数学模型。除此之外,提出了面齿轮的一种可展直纹面,该直纹面相对理论齿面的偏差在工作与过渡曲面部分分别不到模数的1/70和1/20,达到了本项目的预期目标。.对被加工齿面的齿面偏差进行了分析,其中点接触双参数包络法能够加工与传统加工方法一样的面齿轮,不存在齿面偏差,从而逾越了面齿轮的加工刀具的产形线须为渐开线这一技术障碍。线接触单参数包络法由于以空间直线替代面齿轮与假想产形轮接触的空间曲线,齿面偏差不可避免,但基于齿面主动设计,并对刀具运动参数进行适当控制,依然可以获得较理想的几何与承载啮合性能,可展直纹面的啮合性能较理想。.已将上述两种加工方法转化为数控加工方法,并已选择哈默数控系统对上述加工方法进行验证,基于虚拟加工软件Vericut已完成数控程序的编写和加工过程仿真,经过对比分析,虚拟加工齿面与数值齿面完全相同,已表明了所述研究方法的可行性。对可展直纹面进行了刨削加工仿真,仿真结果与可展指纹面相同.完成了几何和承载接触特性分析,获得了安装误差对面齿轮理论齿形承载接触特性的影响规律。几何接触特性分析表明单参数包络法所加工的齿面几何啮合性能不差于面齿轮的理论齿面,但齿面接触应力偏大,需要合理的控制单参数包络法中齿面接触的椭圆长度。受疫情影响未完成实验,待疫情结束后,继续完成实验研究。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
掘进工作面局部通风风筒悬挂位置的数值模拟
响应面法优化藤茶总黄酮的提取工艺
采用深度学习的铣刀磨损状态预测模型
齿面微点蚀演变对直齿轮啮合功耗的影响规律研究
点啮合面齿轮磨齿加工与齿面主动设计理论方法研究
直齿锥齿轮端面滚齿成形机理与齿面控制理论
新型弧线齿面齿轮啮合理论与制造技术研究