并行子空间学习方法及其大规模图像识别应用研究

基本信息
批准号:61272273
项目类别:面上项目
资助金额:82.00
负责人:荆晓远
学科分类:
依托单位:武汉大学
批准年份:2012
结题年份:2016
起止时间:2013-01-01 - 2016-12-31
项目状态: 已结题
项目参与者:张立强,陈旭,丁月华,陈瑶,吴海涛,文鹏,汪照龙,卓自锋,张小兰
关键词:
并行子空间学习框架有监督的并行线性鉴别分析方法大规模生物特征图像识别无监督的并行局部保留映射方法特征选择
结项摘要

Subspace learning is an effective image feature extraction and recognition technique. However, in its real-world applications, how to recognize the large-scale image sample set is a difficult issue. In order to reduce the computational time and improve the recognition performance of subspace learning technique under the situation of large-scale image recognition, we propose the parallel subspace learning approaches: (1) First, we develop a parallel subspace learning framework, which divides the sample set into several subsets by designing two random data division strategies that are Equal Data Division (EDD) and Unequal Data Division (UDD). These two strategies correspond to equal and unequal computational abilities of nodes under parallel computing environment. The graph embedding method is employed to provide a general formulation for the developed framework; (2) Under this framework, we propose a supervised parallel linear discriminant analysis approach, which computes linear discriminant features of each subset and selects features with the largest Fisher scores for classification; (3) Under this framework, we propose an unsupervised parallel locality preserving projection approach, which computes locality preserving projection features of each subset and selects features with the smallest Laplacian scores for classification. Face recognition and palmprint recognition are two major application fields of subspace learning technique. We verify the proposed approaches by constructing large-scale face and palmprint datasets.

子空间学习是一种有效的图像特征提取和识别技术。在该技术的实际应用中,如何识别大规模的图像样本集是一个难点。为了降低大规模图像识别中子空间学习方法的计算代价、提高识别效果,本项目提出了并行子空间学习新方法:(1)首先构造并行子空间学习框架,即把原始样本集随机划分成多个子集,根据并行计算环境中各节点的计算能力相等或者不等的情况,设计了等分和不等分数据划分策略,然后使用图嵌入表示方法给出学习框架;(2)根据框架,提出有监督的并行线性鉴别分析方法,即分别计算每个子集的线性鉴别特征,选择Fisher鉴别值大的特征用于分类。(3)根据框架,提出无监督的并行局部保留映射方法,即分别计算每个子集的局部保留映射特征,选择Laplacian值小的特征用于分类。人脸识别和掌纹识别是子空间学习技术应用比较多的领域。本项目将通过构造大规模的人脸图像库、掌纹图像库来验证所提出的方法。

项目摘要

子空间学习是一类重要的图像特征提取和识别技术。本项目实现了并行子空间学习方法,深入开展了图像特征提取技术的研究,提出了多种新方法,并应用到人脸识别等生物特征识别领域,取得了良好的实验效果。在本项目资助下,发表SCI检索论文8篇,EI检索论文10篇,包括国际权威会议CVPR、AAAI、IJCAI等和国际权威期刊IEEE Transactions on Image Processing、Pattern Recognition等;培养博士、硕士研究生10余名;参加了多个学术会议、进行了广泛的学术交流。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

涡度相关技术及其在陆地生态系统通量研究中的应用

涡度相关技术及其在陆地生态系统通量研究中的应用

DOI:10.17521/cjpe.2019.0351
发表时间:2020
3

监管的非对称性、盈余管理模式选择与证监会执法效率?

监管的非对称性、盈余管理模式选择与证监会执法效率?

DOI:
发表时间:2016
4

一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能

一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能

DOI:10.16085/j.issn.1000-6613.2022-0221
发表时间:2022
5

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019

荆晓远的其他基金

相似国自然基金

1

鲁棒判别的多视角自适应子空间学习及其在异质图像识别上的应用研究

批准号:61871444
批准年份:2018
负责人:业巧林
学科分类:F0116
资助金额:16.00
项目类别:面上项目
2

并行子空间校正方法设计及其理论与应用

批准号:11701545
批准年份:2017
负责人:董乾
学科分类:A0405
资助金额:25.00
项目类别:青年科学基金项目
3

基于本征维数估计和受限子空间的图像识别研究

批准号:U1404607
批准年份:2014
负责人:廖亮
学科分类:F0116
资助金额:29.00
项目类别:联合基金项目
4

海水入侵问题的并行子空间校正算法研究

批准号:11401588
批准年份:2014
负责人:张建松
学科分类:A0501
资助金额:23.00
项目类别:青年科学基金项目