实和复芬斯勒几何中的若干问题研究

基本信息
批准号:10871171
项目类别:面上项目
资助金额:25.00
负责人:沈一兵
学科分类:
依托单位:浙江大学
批准年份:2008
结题年份:2011
起止时间:2009-01-01 - 2011-12-31
项目状态: 已结题
项目参与者:沈忠民,夏巧玲,陈滨,韩敬伟,朱微,崔宁伟,沈斌,田黄佳,康琳
关键词:
调和映射Ricci曲率旗曲率实和复芬斯勒流形Randers度量
结项摘要

芬斯勒几何是比黎曼几何更广泛的一类度量空间几何。本项目主要研究实和复芬斯勒几何中当前颇为大家关注的若干问题,其中包括实和复芬斯勒流形的调和映射;射影球丛上全Ricci数量泛函的临界芬斯勒度量;复芬斯勒度量的等价性和分类;射影相关的芬斯勒度量及其分类;实和复Randers度量的曲率与拓扑;芬斯勒子流形几何的整体性质;特殊芬斯勒度量的各种曲率和构造等。在我们已有研究的基础上,通过本项目的研究,充实和丰富芬斯勒几何的研究领域,深化人们对芬斯勒几何及其应用的认识,开展广泛的国际学术交流,提高我国在黎曼-芬斯勒几何研究方面的整体实力,为进一步发展黎曼-芬斯勒几何作出更大的贡献。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

油源断裂输导和遮挡配置油气成藏有利部位预测方法及其应用

油源断裂输导和遮挡配置油气成藏有利部位预测方法及其应用

DOI:10.16509/j.georeview.2021.02.010
发表时间:2021
2

沙尘信道下激光通信系统的性能分析

沙尘信道下激光通信系统的性能分析

DOI:10.3788/fgxb20194005.0659
发表时间:2019
3

水泥基复合材料Seebeck热电性能研究现状与展望

水泥基复合材料Seebeck热电性能研究现状与展望

DOI:10.19817/j.cnki.issn1006-3536.2021.09.047
发表时间:2021
4

树突状表皮T细胞调节小鼠表皮干细胞增殖和分化促进小鼠全层皮肤缺损创面愈合的机制研究

树突状表皮T细胞调节小鼠表皮干细胞增殖和分化促进小鼠全层皮肤缺损创面愈合的机制研究

DOI:10.3760/cma.j.cn501120-20200623-00324
发表时间:2020
5

基于神经网络方法获得最优化月球内部结构模型

基于神经网络方法获得最优化月球内部结构模型

DOI:10.6038/cjg2022o0237
发表时间:2022

沈一兵的其他基金

批准号:10271106
批准年份:2002
资助金额:18.00
项目类别:面上项目
批准号:10571154
批准年份:2005
资助金额:29.00
项目类别:面上项目
批准号:11126024
批准年份:2011
资助金额:6.00
项目类别:数学天元基金项目

相似国自然基金

1

芬斯勒几何中若干问题的研究

批准号:11371032
批准年份:2013
负责人:莫小欢
学科分类:A0108
资助金额:62.00
项目类别:面上项目
2

复芬斯勒流形的几何分析

批准号:11671330
批准年份:2016
负责人:钟春平
学科分类:A0202
资助金额:48.00
项目类别:面上项目
3

黎曼-芬斯勒几何中若干问题的研究

批准号:11071005
批准年份:2010
负责人:莫小欢
学科分类:A0108
资助金额:27.00
项目类别:面上项目
4

黎曼-芬斯勒几何中若干问题的研究

批准号:11461064
批准年份:2014
负责人:张晓玲
学科分类:A0108
资助金额:40.00
项目类别:地区科学基金项目