Installing the aerodynamic braking on the roof of train will change the original flow field and make influence on train structure, aerodynamics and dynamics during operation. Dealing with this problem, mechanical action spectrum (between aerodynamic brake and high-speed train) on aerodynamics, structural interface and dynamics should be built. A mathematics model and research method, which is for analyzing the operating safety of trains with aerodynamic brake, should be developed and with wide applicability, so that the aerodynamic braking can be promoted to be engineered..First, aerodynamic action spectrum of trains with aerodynamic braking should be built, according to aerodynamics theory. Through discussing comparison between trains with and without aerodynamic brake, researchers can study the change law of aerodynamic coupling spectrum. Second, mechanical action spectrum between aerodynamic brake and train structural interface should be built. Under this condition, the aerodynamic effect spectrum of aerodynamic brake should be regarded as external force of the train. Based on the force balance , the change law of other forces is studied. Namely, load transfer mechanism of the aerodynamic force on structure and suspension system of the train is studied. The structure interface spectrum between the aerodynamic braking and the train is built. And then following items can be further researched: coupling between sprung components with aerodynamic force and train body, and wheel-rail coupling vibration excitation of unsprung components. Results of items above can be developed into the dynamic influence rule from aerodynamic brake to train. Using the aerodynamic, structure and dynamics model, the mechanics influence law of aerodynamic braking on trains is made by comparison to the original mechanical property.
针对风阻制动装置装于车顶,改变了列车原有流场,对列车结构、运行时的空气动力学以及动力学产生影响的问题,研究风阻制动对高速列车在空气动力、结构强度以及动力学等方面影响规律,形成一套适用性较广的分析列车装有风阻制动后运行安全性研究的数学模型和研究方法,促进风阻制动工程化。首先运用空气动力学理论建立装有风阻制动装置列车的空气动力作用谱,通过对比研究列车不装风阻制动和装有风阻制动的空气动力学耦合谱的变化规律。然后将风阻制动所受空气动力作用谱作为列车所受外力,研究受力平衡作用下,导致其他作用力改变规律,即研究气动力在结构力和列车二系系统中力传递规律,建立风阻制动装置与列车结构接口的力学作用谱,进而建立列车簧上部分具有空气动力载荷与列车车身耦合作用和簧下部分具有轮轨系统耦合振动激励的装有风阻制动列车动力学模型。基于所建气动、结构和动力学模型,与原有列车力学性能对比,得出装有风阻制动列车力学变化规律。
本项目是在课题组承担了国家科技支撑计划,进行了单翼板式风阻制动研制后提出需要进行风阻制动对列车力学影响规律研究工作,研究风阻制动对高速列车在空气动力、结构强度以及动力学等方面影响规律,形成一套适用性较广的分析列车装有风阻制动后运行安全性研究的数学模型和研究方法,促进风阻制动工程化。.首先研究风阻制动装置对列车的空气动力影响规律。分析了风阻制动和列车流场规律,分析了风阻制动和列车耦合压力分布场和速度分布场,形成了风阻制动装置与列车的空气动力学耦合谱。基于目前课题组正在进行的适用于双向运行的小型分散式风阻制动,分析了此种风阻制动装置在列车上布置时,其空气动力学特性,通过对比研究横向间距、纵向间距和风阻制动风翼板的尺寸对气动力的影响规律,运用正交试验方法,得到了小型化在车上空气动力学最优、制动力最优的布置方案。.研究了风阻制动装置对列车的车体结构受力影响规律。分析了风阻制动装置受力特点,结合小型化风阻制动型式,建立了风阻制动与车体的耦合式力学数学模型,形成了风阻制动装置与列车结构的力学耦合谱。基于此力学耦合谱,分析得到了风阻制动装置与车体结构接口方案。.研究了风阻制动装置对列车的动力学影响规律。根据建立的风阻制动装置与列车的空气动力作用谱,以载荷谱作为高速列车系统模型输入。结合利用列车动力学计算理论,建立包含风组制动装置的高速列车结构力学模型,形成风阻制动装置与列车结构的动力学耦合谱。运用该动力学耦合谱,进行了小型化风阻制动装置在车上安装对列车轴重转移和轮重减载率的影响规律,并分析了侧风工况下安装有小型化风阻制动装置运行安全性。.通过本项目建立了风阻制动对高速列车力学影响规律,并应用在了课题组开发的3套小型化风阻制动样机中。提出了风阻制动强度、在车上安装位置和方式、打开方式等设计指标,指导了小型化风阻制动样机设计。目前3套样机都已完成了功能试验。
{{i.achievement_title}}
数据更新时间:2023-05-31
拥堵路网交通流均衡分配模型
低轨卫星通信信道分配策略
掘进工作面局部通风风筒悬挂位置的数值模拟
敏感性水利工程社会稳定风险演化SD模型
空气电晕放电发展过程的特征发射光谱分析与放电识别
复杂流场环境下高速列车制动盘组动态特性及其对运行列车影响研究
高速列车制动盘热弹耦合动力学特性研究
列车制动力对铁路桥梁的作用机理及最不利影响的研究
钩缓装置运行行为及其对大轴重重载列车制动安全影响机理研究