In the project, automorphisms and cohomologies of finite p-groups are studied. By use of general linear groups and symplectic groups, automorphism groups of finite p-groups with derived subgroup of p order are determined from different respects, and further automorphism groups of some special types of finite p-groups with a cyclic derived subgroup and finite p-groups with a cyclic center are studied. With the help of a representing set, Frobenius category, Quillen complex, etc, the mod-p cohomologies of finite p-groups with a cyclic derived subgroup, finite p-groups with a cyclic center and finite p-groups with a cyclic Frattini subgroup are studied. On one hand, by studying the cardinality of a maximal non-commuting set in these finite p-groups, the mod-p cohomology lengths of these finite p-groups are determined; On the other hand, the mod-p cohomologies of finite groups with these finite p-groups as Sylow p-subgroups are studied, in these finite p-groups which types are Swan groups or resistant groups are determined.
本课题研究有限p-群的自同构和上同调。借助于一般线性群,辛群,从不同方面刻画导群为p阶的有限p-群的自同构群,进一步,研究导群为循环的有限p-群和中心为循环的有限p-群中一些特殊类型的自同构群。借助于表示集,Frobenius范畴,Quillen 复形等理论,研究导群为循环的有限p-群,中心为循环的有限p-群,Frattini子群为循环的有限p-群的模p上同调。一方面,通过研究这些有限p-群的极大非交换集的势,刻画它们的模p上同调长;另一方面,研究以这些有限p-群为Sylow p-子群的有限群的模p-上同调,确定这些有限p-群中哪些是Swan群或者resistant群。
课题组成员按照项目研究计划, 基本完成预期任务,达到了本课题的预期目标。主要研究了导群是p阶群的有限p-群, Frattini子群是循环的有限p-群,中心是循环的有限p-群的极大非交换集的势; 确定了导群是p阶群,循环群被初等Abel群中心扩张的有限p-群的自同构群和一类中心是循环的,中心商群是齐次循环的有限p-群的自同构群; 确定了几乎所有导群是p阶群的,循环群被初等Abel群中心扩张的有限p-群是Swan群。研究成果对一些自同构的提升问题提供了有效的方法,对非交换集势的确定提供了有效的思路,对Swan群的判断提供了不同的计算方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
一种加权距离连续K中心选址问题求解方法
关于有限p-群的自同构群的研究
关于有限秩的可解群的自同构研究
关于Hopf代数的上同调的计算
关于局部上同调模的性质、结构的研究