拟概自守性与泛函微分方程拟概自守解研究

基本信息
批准号:11361032
项目类别:地区科学基金项目
资助金额:40.00
负责人:常永奎
学科分类:
依托单位:兰州交通大学
批准年份:2013
结题年份:2017
起止时间:2014-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:张睿,孟海霞,史振霞,范虹霞,王兴泉,张蕊,赵建琼,罗小霞,成转霞
关键词:
拟概自守解随机过程拟概自守性泛函微分方程遍历性
结项摘要

The periodic, almost periodic and almost automorphic solutions to differential equations can profoundly characterize the asymptotical behavior of the corresponding dynamic systems, which have received great attention by many scholars. The almost automorphic phenomenon is the most common one among these three kinds of phenomenon. This project is mainly focused upon new quasi-almost automorphic solutions to functional differential equations with their applications by integrated applications of theories of nonlinear analysis, stochastic analysis and quasi-almost automorphic functions et al. First, we shall introduce some new concepts of quasi-almost automorphic functions and establish completeness and ergodicity theorems in the space of such functions; Second, we shall make these new quasi-almost automorphic function spaces "functional change" and obtain their ergodicity theorems, then we investigate properties of quasi-almost automorphic solutions to some functional differential equations with typical application backgrounds, and get some new meaningful results. The results of this study will further improve and perfect the basic theory of almost automorphic functions, and also provide new ideas and methods for the resolvement of some practical problems.

微分方程的周期解、概周期解以及概自守解可以深刻地刻画相应动力系统的渐近行为,一直受到众多学者的高度重视.其中, 概自守现象则是三种现象中最普遍的一种. 本项目拟综合应用非线性分析、随机分析和拟概自守函数等理论来研究泛函微分方程新拟概自守解及其应用. 首先提出一些新的拟概自守函数的概念, 建立其函数空间的完备性和遍历性; 其次将这些新拟概自守函数空间进行"泛函化", 得到其相应"泛函化"的遍历性结果, 进而研究一些具有典型应用背景的泛函微分方程拟概自守解的性质, 得到一些新的有意义的结果; 这些研究成果将进一步改进和完善概自守函数的基本理论, 也为某些实际问题的解决提供新的思路和方法.

项目摘要

微分方程的周期解、概周期解以及概自守解可以深刻地刻画相应动力系统的渐近行为,一直受到众多学者的高度重视。其中,概自守现象则是三种现象中最普遍的一种。本项目综合应用了非线性分析、随机分析和拟概自守函数等理论来研究泛函微分方程新拟概自守解及其应用。首先提出了一些新的拟概自守函数的概念, 建立了其函数空间的完备性和遍历性; 其次将这些新拟概自守函数空间进行“泛函化”, 得到其相应“泛函化”的遍历性结果, 进而获得一些具有典型应用背景的泛函微分方程拟概自守解的存在性;分数阶微积分被视为刻画长时记忆过程最有效率的工具之一,本项目针对一类(1,2)阶退化分数阶发展方程,引入了一类分数阶预解算子族,讨论了此类算子族的连续性和紧性,进而获得了此类退化分数阶发展方程驱动系统的近似可控性、最优控制问题及集值问题的可解性。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征

珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征

DOI:10.7524 /j.issn.0254-6108.2017122903
发表时间:2018
2

向日葵种质资源苗期抗旱性鉴定及抗旱指标筛选

向日葵种质资源苗期抗旱性鉴定及抗旱指标筛选

DOI:10.7606/j.issn.1000-7601.2021.04.29
发表时间:2021
3

多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法

多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法

DOI:10.13334/j.0258-8013.pcsee.190276
发表时间:2020
4

复杂系统科学研究进展

复杂系统科学研究进展

DOI:10.12202/j.0476-0301.2022178
发表时间:2022
5

基于MCPF算法的列车组合定位应用研究

基于MCPF算法的列车组合定位应用研究

DOI:
发表时间:2016

常永奎的其他基金

批准号:10826063
批准年份:2008
资助金额:3.00
项目类别:数学天元基金项目
批准号:10901075
批准年份:2009
资助金额:17.00
项目类别:青年科学基金项目

相似国自然基金

1

二阶微分方程解的概自守性

批准号:11026100
批准年份:2010
负责人:张俊
学科分类:A0206
资助金额:3.00
项目类别:数学天元基金项目
2

时滞依赖状态的偏泛函微分方程可解性及拟概周期性研究

批准号:10901075
批准年份:2009
负责人:常永奎
学科分类:A0301
资助金额:17.00
项目类别:青年科学基金项目
3

非线性发展方程概自守性的若干研究

批准号:11101192
批准年份:2011
负责人:丁惠生
学科分类:A0206
资助金额:22.00
项目类别:青年科学基金项目
4

泛函微分方程的加权伪几乎自守性

批准号:11426201
批准年份:2014
负责人:夏治南
学科分类:A0302
资助金额:3.00
项目类别:数学天元基金项目