Microgrid is one of the most important ways to solve energy and environmental problems. In order to realize the multi-objective operation demand of microgrid, it is necessary to solve the stability problem of multi-mode and multi-transient operation of microgrid, especially the deterioration problem of power quality caused by the mutation of over current and transient voltage peak. Firstly, this project uses the hierarchical decomposition method to study the implementation problem of the three-level operation targets, which are steady state target, the benefit target and the transient performance target. Based on the analysis of the dynamic control performance of the target implementation unit (inverter-based distributed generator), a reconfigurable hierarchical switching control architecture is constructed for multi-objective and multi-mode microgrid. The relationship between each layer of the microgrid is studied to explore the operation and implementation mechanism between targets of each layer and the dynamic multi-loop control characteristics of inverter-based distributed generator. Then, based on the decision making and weighting mechanism, a dynamic model of multi-loop controller is developed, the parameters of which can be flexibly selected, combined and controlled according to the two level targets. The dynamic optimum relationship between the reconfigurable control targets and the multi-loop control structure is presented. Finally, based on the transient performance target, a bumpless switching system is reconstructed with the establishment of a comprehensive evaluation mechanism and a quantitative index mechanism for transient performance.A way of measurable bumpless switching control method is proposed to provide the theoretical support for the research of the high performance multi-mode control and the exploration of the cyber-physical energy system.
微网技术是解决未来能源和环境问题的关键技术之一。为了实现微网多目标运行,必须保证微网多态的稳定性,解决切换时由过电流和暂态电压峰值突变造成的电能质量恶化的问题。本项目首先采用递阶分解的方式围绕微网运行的稳态目标、效益目标和暂态性能三阶层目标的实现需求,基于对目标实现单元(逆变型微源)动态控制性能的分析,构建多目标可重构的微网多态分层递阶控制结构,研究微网各阶层目标之间的控制关系和作用机理,探索各阶层目标与逆变型微源多环控制结构的实现机制;其次通过引入决策和加权机制,建立融合前两阶层目标的可灵活选择、组合和控制的多环动态控制模型,确立可分解重构的控制目标和多环控制结构的动态优化关系;最后基于第三阶层暂态性能目标重构无扰动切换系统,建立暂态性能综合评价机制和量化指标体系,提出一套可评价的无扰动切换控制方法,为多目标复杂动态系统的高性能多态控制研究和信息物理能源系统的探索提供理论支持。
微网技术是解决未来能源和环境问题的关键技术之一,是实现能源互联网的关键节点。微网技术的发展对我国调整能源结构、保护环境、解决农村用能及边远地区用电、进行生态建设以及传统电网向智能电网的过渡等均具有重要意义。为了实现多目标运行,必须保证微网多态的稳定性,尤其是切换时由过电流和暂态电压峰值突变造成的电能质量恶化。本项目首先采用了递阶分解的方式围绕微网运行的稳态目标、效益目标和暂态性能三阶层目标的实现需求,基于对目标实现单元(逆变型微源)动态控制性能的分析,构建多目标可重构的微网多态分层递阶控制结构,研究了微网各阶层目标之间的控制关系和作用机理,探索了各阶层目标与逆变型微源多环控制结构的实现机制;接着通过引入决策和加权机制,建立了融合前两阶层目标的可灵活选择、组合和控制的多环动态控制模型,确立了可分解重构的控制目标和多环控制结构的动态优化关系;最后基于第三阶层暂态性能目标重构无扰动切换系统,建立了暂态性能评价函数和量化指标体系间的参数关系模型,提出了一套可评价的无扰动切换控制方法,为多目标复杂动态系统的高性能多态控制研究和能源互联网的建立提供理论支持。经过三年的努力,我们的科研工作完成了指定的目标,授权发明专利5项,发表SCI论文10篇,出版专著一部。研究成果涉及得研究内容包括:(1) 多目标可重构的微网多态分层递阶控制结构研究 (2) 融合两阶层目标的基于决策和加权机制的模态依赖的多环动态优化控制器模型建立 (3) 基于暂态性能综合评价机制的可量化的无扰动切换控制策略研究.
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
微电网的多级多目标大系统递阶控制研究
微网系统电压分层控制策略及电压稳定性研究
基于大数据的微网系统多目标协同优化运行策略研究
多功能可重构的环形结构无源滤波器研究