高阶分数阶偏微分方程的全离散局部间断有限元方法研究

基本信息
批准号:11426090
项目类别:数学天元基金项目
资助金额:3.00
负责人:韦雷雷
学科分类:
依托单位:河南工业大学
批准年份:2014
结题年份:2015
起止时间:2015-01-01 - 2015-12-31
项目状态: 已结题
项目参与者:谢萍丽,王俊岭
关键词:
稳定性误差估计分数阶微积分局部间断有限元方法超收敛
结项摘要

Fractional partial differential equations have attracted much interest and attention of more and more domestic and international scholars and engineers with this kind of equations have been applied in more and more fields in recent years. The numerical method for such problems is very important in the theory and practice. At present the research on the numerical methods for fractional partial differential equations with higher derivatives is very limited. The project studies superconvergence property and error estimates of fully discrete discontinuous Galerkin methods for solving a class of fractional partial differential equations with higher derivatives. Superconvergence is a effective way to improve the convergence rate and solve the high-dimensional problems. An important motivation for investigating such superconvergence is to lay a solid theoretical foundation for the fact that the error between the discontinuous Galerkin solution and the exact solution does not grow over a long time period. This property is especially prominent for fine meshes,and provides a solid theoretical basis for making numerical simulation for a long time. The results will show that the methods has a unique advantage to solve this kind of equations, which will further strengthen the convergence theory of discontinuous Galerkin methods.

近年来,随着分数阶偏微分方程在越来越多的领域中得到应用,已经引起了国内外越来越多的学者及工程技术人员的兴趣和重视。对这类方程的数值解法进行研究有着重要的理论和实践意义。目前对于含有高阶空间导数的分数阶偏微分方程数值方法方面的研究非常有限。本项目致力于研究几类高阶分数阶偏微分方程的局部间断有限元方法的超收敛性和误差估计。超收敛性能够有效地保证数值解与真解的误差在很长一段时间内不会增长,尤其当网格很密时,该性质体现的更为明显,为数值解的长时间形态提供了坚实的理论依据。该项目的研究结果能够显示间断有限元方法用于求解此类方程的有效性和优越性,同时进一步丰富间断有限元方法的超收敛性理论。

项目摘要

本项目致力于对分数阶偏微分方程设计出长时间收敛和稳定的高精度数值算法,并分析格式的收敛性,验证其高阶精度特点。经过一年的努力,基本完成了项目的预期成果,取得成果概述如下:首先,对时间分数阶扩散方程构造了高精度的局部间断有限元方法。在时间方向上用有限差分离散,空间方向上间断有限元方法离散,构造一种隐式全离散局部间断有限元方法,并给出格式的误差估计和稳定性结果。其次, 对时间分数阶KdV方程,设计无条件稳定的全离散间断有限元格式,通过构造特殊的全局投影,证明当使用交错数值流通量时,局部间断有限元解的收敛性,并在数值上进行验证。另外, 对时间分数阶四阶问题的全离散的局部间断有限元方法进行分析,给出误差估计和收敛性结果。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

农超对接模式中利益分配问题研究

农超对接模式中利益分配问题研究

DOI:10.16517/j.cnki.cn12-1034/f.2015.03.030
发表时间:2015
2

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
3

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

DOI:10.19701/j.jzjg.2015.15.012
发表时间:2015
4

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

DOI:10.3969/j.issn.1002-0268.2020.03.007
发表时间:2020
5

气载放射性碘采样测量方法研究进展

气载放射性碘采样测量方法研究进展

DOI:
发表时间:2020

韦雷雷的其他基金

批准号:12126315
批准年份:2021
资助金额:10.00
项目类别:数学天元基金项目

相似国自然基金

1

分数阶Klein-Kramers方程的高阶局部间断Galerkin方法

批准号:11426174
批准年份:2014
负责人:李灿
学科分类:A0504
资助金额:3.00
项目类别:数学天元基金项目
2

求解对流扩散方程的全离散间断有限元方法

批准号:11271187
批准年份:2012
负责人:张强
学科分类:A0501
资助金额:50.00
项目类别:面上项目
3

分数阶Schrödinger方程的间断有限元方法以及超收敛分析

批准号:12126325
批准年份:2021
负责人:陈艳萍
学科分类:A0504
资助金额:20.00
项目类别:数学天元基金项目
4

分数阶Schrödinger方程的间断有限元方法以及超收敛分析

批准号:12126315
批准年份:2021
负责人:韦雷雷
学科分类:A0504
资助金额:10.00
项目类别:数学天元基金项目