Electrochemical reduction of CO2, usually conducted at ambient conditions, has the ability to produce fuels and chemicals (such as CO, carboxylic acid, alcohol and alkane), which has significant importance in that both mitigation of CO2 emissions and alleviation of reliance on fossil fuels can be achieved at the same time. However, several challenges, including poor selectivity of product, high over-potential and low Faraday efficiency, have to be addressed before the CO2 reduction reaction becomes a viable technology. Underlying these technological obstacles is the limited mechanistic understanding of the CO2 reduction reaction in terms of reaction intermediates and elementary steps. Towards a better understanding the CO2 reduction reaction, an advanced study based on a combination of differential electrochemical mass spectrometry and surface enhanced Raman spectroscopy will be conducted to interrogate the CO2 reduction mechanisms on noble metal surfaces of Au, Ag, Cu and their alloys. Differential electrochemical mass spectrometry can provide the information of CO2 consumption rate, and the generation rate of any CO2 reduction products. Simultaneously, surface enhanced Raman spectroscopy can provide spectroscopic identification of any reaction intermediates, which is very beneficial to the formulation of reaction routes. By correlating the results of differential electrochemical mass spectrometry, surface enhanced Raman spectroscopy, and the electrochemical parameters of voltage, current and charge during the CO2 reduction reaction, molecular reaction mechanisms will be obtained. An improved understanding of the CO2 reduction reaction would contribute greatly to the development of high performance electro-catalysts and the realization of practical electrochemical CO2 conversion devices.
电化学还原法能在常温常压下将CO2转化为燃料或化工原料如一氧化碳、有机酸、醇和小分子烷烃等; 既能减少CO2的净排放,又能减轻对化石能源的依赖,具多重意义。目前CO2电还原过程普遍存在产物选择性差、过电势大、法拉第效率低等问题;此外对CO2电还原反应原理更是缺乏深入的理解,如还原过程中的中间产物和基元步骤等。针对上述关键科学问题,在本项目中,我们将运用微分电化学质谱和表面增强拉曼光谱联用技术,原位研究CO2在金、银、铜及其合金表面的电化学还原反应原理。微分电化学质谱能分析在CO2电还原过程中的任意时刻消耗CO2的速度和还原产物的种类和生成速度;同时表面增强拉曼光谱测量电极表面反应中间体的谱学特征;结合电化学技术给出的电压、电流和电量等信息,在分子水平上归纳得出CO2电还原的反应原理。对反应原理的深入认识,将为开发高效的CO2电催化剂提供理论指导,并能加快CO2电化学还原技术的实用化进程。
对温室气体——CO2进行高值化利用,不仅可以减少CO2的净排放,还可以减轻对化石能源的过度依赖,意义重大。传统方式是在常温常压下,通过电化学还原法将CO2转化为燃料或化工原料如一氧化碳、有机酸、醇和小分子烷烃等加以利用,但是,CO2电还原过程普遍存在产物选择性差、过电势大、法拉第效率低、电还原反应原理不清晰等问题。.本项目的主要研究内容为构建并拓展现场谱学电化学技术,包含微分电化学质谱、现场电化学拉曼、现场质谱-光谱-电化学联用技术,通过现场质谱电化学技术分析表/界面电化学反应过程中气体消耗与生成的“宏观”过程,与现场光谱电化学技术分析表/界面电化学反应过程中反应中间体、反应产物的“微观”过程,基于互补性优势,从分子层级研究CO2电化学还原反应机制,明晰基元反应步骤,明确反应路径。.利用现场谱学电化学技术,本项目系统研究了氮或氧掺杂碳纳米管(NCNT与OCNT)催化剂催化CO2电化学还原的反应机制。结果表明NCNT催化CO2电化学还原成CO与HCOO-,而OCNT仅催化CO2电化学还原成HCOO-。基于现场谱学电化学研究结果,提出上述水系CO2电化学还原过程的基元反应步骤及反应路径。.突破传统CO2高值化利用模式,提出将CO2作为非水溶剂Li-CO2电池的正极活性物质,通过制备高效的Li2CO3氧化分解催化剂:Ru/GNSs(单分散Ru纳米粒子/石墨烯复合材料)与bi-CoPc(双分子酞菁钴),在O2参与下,可实现室温条件下Li-CO2/O2电池的长循环、低过电势、高能量效率工作。基于bi-CoPc可溶性分子媒介体优异的催化性能,bi-CoPc基Li-CO2/O2电池表现出优异的长循环性能,达到171周,是mono-CoPc基Li-CO2/O2电池的4倍。利用现场谱学电化学技术,明晰了Li-CO2/O2电池的充放电反应机制。.基于现场谱学电化学手段,对反应机制的深入认识,将为开发高效的CO2电催化剂提供理论指导,并能加快CO2电化学还原技术的实用化进程。同时,将CO2作为非水溶剂Li-CO2电池的正极活性物质,也为CO2的高值化利用提供了新思路、新方向与新视角。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
低轨卫星通信信道分配策略
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
钢筋混凝土带翼缘剪力墙破坏机理研究
基于气体扩散电极的电化学原位红外光谱与微分质谱联用技术及其在CO2电催化还原中的应用
生物分子的表面增强拉曼光谱和电化学
液/液界面纳米粒子组装及其原位电化学表面增强拉曼光谱研究
基于超微电极的电化学表面增强拉曼光谱