To increase the meshing efficiency of gears is of important significance to improve the performance of transmission device, save energy and reduce consumption. The accurate modeling of meshing efficiency contributes to the research on the influence mechanism of meshing efficiency and then affects the design of high meshing efficiency gears. The tooth surface normal force, relative sliding/rolling velocity and sliding friction coefficient are the key elements in meshing efficiency model. Among them, the relative sliding / rolling velocity is also an important calculation parameter of sliding friction coefficient. There are some weak points at the present model of meshing efficiency which restrict the accuracy of the model and then limit the intensive research of influence mechanism of the meshing efficiency, such as that the calculation of tooth surface normal force was simplified, the calculation of sliding/rolling velocity didn't consider the effect of transmission errors and the modeling method of sliding friction coefficient didn't completely take into account the lubrication characteristics of gears. This project focuses on the large power double helical gears. The model of meshing efficiency is accurately built by the tooth contact analysis and loaded tooth contact analysis of double helical gears with thermo-elastic sequential coupling and the load sharing. The experiment is carried out to verify the model of meshing efficiency. Based on the accurate modeling of meshing efficiency, the effect of design parameters, the machining accuracy, the lubricating condition and working condition on meshing efficiency are investigated. The project is of important significance to reveal the influence mechanism of meshing efficiency of double helical gears and can provide theoretical and technical support for raising the meshing efficiency of double helical gears. It also provides the guidance for raising the meshing efficiency of other type gears.
提高齿轮啮合效率对改善装置性能和节能降耗具有重要意义。齿轮啮合效率精确建模是研究啮合效率影响机理进而设计高啮合效率齿轮的前提。齿面法向载荷、相对滑动/滚动速度和滑动摩擦因数是啮合效率建模的关键要素。其中,相对滑动/滚动速度又是计算滑动摩擦因数的重要参数。齿面法向载荷的简化计算、相对滑动/滚动速度中未考虑传动误差的影响和未完全针对轮齿摩擦润滑性态的滑动摩擦因数建模方法均制约了啮合效率模型的精度进而限制了对啮合效率影响机理的深入研究。本项目以大功率人字齿轮为研究对象,利用热弹顺序耦合和均载传动下的人字齿轮副轮齿接触分析和承载接触分析,实现人字齿轮啮合效率的精确建模,完成试验验证。在此基础上,探索人字齿轮设计参数、加工精度、润滑条件和工况等对啮合效率的影响规律。本研究对揭示人字齿轮啮合效率的影响机理具有重要意义,可为高啮合效率人字齿轮设计提供理论和技术支持,也为其它类型齿轮啮合效率研究提供指导。
当今全球正面临资源短缺和环境污染等严重问题,节能降耗成为可持续发展的重要任务。提高机械产品特别是大功率传动装置的效率作为实现节能降耗的有效途径,越来越为人们所关注。本项目以大功率人字齿轮为研究对象,提出了“基于热弹耦合齿面接触分析的人字齿轮啮合效率影响机理研究”的课题。以人字齿轮副啮合接触分析研究为切入点,完成了箱体和轴承的三维参数化建模及变形计算,推导出了人字齿轮齿面热变形方程和热变形前后齿面坐标的转换矩阵,建立了人字齿轮副均载传动的数学模型,进而建立了考虑人字齿轮加工误差、安装误差、齿轮修形、齿面热变形、支承变形和均载传动下的人字齿轮副轮齿接触分析模型和承载接触分析模型。在此基础上,建立了人字齿轮齿面瞬时啮合位置的法向载荷计算模型、考虑承载传动误差的相对滑动/卷吸速度计算模型和混合弹流润滑下的齿面滑动摩擦因数计算模型,从而建立了人字齿轮滑动摩擦功率损失模型。利用已有公式计算滚动摩擦功率损失,最终得到了人字齿轮的啮合效率模型。研究了电机和加载器安装位置对试验台能耗的影响,得出了当电机和加载器安装在同一轴线时,电机补充的功率和扭矩最小的结论。以此理论为基础设计了低耗高精度的人字齿轮传动效率试验台,确定了人字齿轮传动效率试验台中试验人字齿轮传动效率的计算方法,根据风损、搅油损失和轴承中运动件的搅油损失与系统是否受载无关的理论依据,推导出了齿轮啮合效率试验值的计算公式,进而进行了空载和受载下的人字传动效率试验,获得了人字齿轮啮合效率的试验值,与理论值进行对比,完成了对人字齿轮啮合效率模型的试验验证。在此基础上,探索了人字齿轮设计参数、加工精度、润滑条件、扭矩和转速等对人字齿轮啮合效率的影响规律。本研究在对人字齿轮啮合效率精确建模的基础上,揭示了人字齿轮啮合效率的影响机理,为高啮合效率人字齿轮的设计提供了理论和技术支持。同时,也为其它类型齿轮啮合效率的研究提供了理论和技术指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
监管的非对称性、盈余管理模式选择与证监会执法效率?
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于形貌多尺度表征的齿面润滑、热、弹耦合接触机理研究
数字化复合齿面齿轮弹性动态啮合机理研究
齿面微点蚀演变对直齿轮啮合功耗的影响规律研究
点啮合面齿轮磨齿加工与齿面主动设计理论方法研究