This project dedicates to the design and synthesis of one-dimensional iron-based bimetallic Fenton-like composite catalyst and its enhanced removal mechanism for polycyclic aromatic hydrocarbons (PAHs). In order to solve the problems in Fenton-like catalysis system, including low regeneration rate of Fe3+ to Fe2+ and limited electron transfer rate on reaction interface, this project proposes to synthesize iron-based bimetallic carbon nanofiber composite catalyst with tunable component and structure. The enhanced heterogeneous Fenton-like catalytic performance of catalyst will be evaluated by using PAHs as a typical kind of micropollutants. The enhanced mechanism of catalytic activity will be clarified by studying the valence state of the catalyst interface, the change of the redox potential, the evolution of active radicals and finally the degradation process of PAHs at the catalyst interface. Then, the intrinsic relationship between the microstructure of the catalyst and the synergistic mechanism of PAHs removal will be established. Finally, the enhanced mechanism of synergistic effect between bimetallic species and one-dimensional architecture will be clarified. Through the research and exploration of these scientific problems, the technical problems of Fenton-like catalytic system will be solved. Heterogeneous Fenton-like catalyst with high activity and stability will be developed, which will also provide technical support for the efficient removal of refractory organic micropollutants.
本项目提出构筑一维铁基双金属类Fenton复合催化剂并开展其对典型污染物多环芳烃(PAHs)增效去除的研究思路。针对类Fenton催化体系面临的Fe3+/Fe2+转化慢及界面电子迁移速率受限的技术难题,形成以铁基双金属为活性中心、一维碳纤维为载体,组成及结构可调的一维铁基双金属类Fenton复合催化剂。阐明催化剂的金属中心以及载体结构的调变规律,重点围绕以PAHs为代表的目标污染物在一维铁基双金属类Fenton催化体系的增效去除机理展开研究。探讨反应过程中催化剂界面价态及氧化还原电对电位的变化规律,分析活性自由基的演变规律及去向,揭示PAHs的降解过程。建立催化剂微观结构对PAHs去除增效机制的内在联系,诠释催化剂结构调变和PAHs协同去除的构效关系,最终阐明铁基双金属协同及一维结构增效机制。通过这些科学问题的研究,解决类Fenton催化体系面临的瓶颈,构建具有高活性和稳定性的非均相类Fenton催化剂,为难降解有机污染物的高效去除提供技术支撑。
高级氧化技术是降解水体有机污染物的重要途径之一,其中非均相催化剂的理性设计是核心。项目研究围绕高效非均相催化剂的构建展开,具体以新型晶体材料,如金属有机框架(MOF)、聚单宁酸晶体棒等为前驱体,通过界面转化策略,可控构建兼具等级结构和丰富缺陷位点的衍生金属氧化物、碳及其复合材料,并探究其高级氧化(如芬顿催化、光催化等)降解污染物的性能及机理。在完成项目研究目标的基础上,进一步发展基于MOF界面组装的复合及衍生材料合成体系,制备出缺陷MOF、MOF异质结构、衍生金属硫化物中空结构等系列催化材料,并展示了其在光/电催化氧还原、氧析出及过氧化氢合成等方面的应用,为新型非均相催化材料的结构及功能设计提供思路。基于以上研究,项目以第一/通讯/共作者在Nature Communications、Angewandte Chemie International Edition、Advanced Functional Materials、Advanced Science、Chemical Science、Coordination Chemistry Reviews、Applied Catalysis B: Environmental、Journal of Hazardous Materials等期刊发表SCI论文17篇。相关论文被引超过430次,两篇论文入选ESI高被引论文。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
低轨卫星通信信道分配策略
中国参与全球价值链的环境效应分析
纤维基Fenton催化剂的制备及其对水中有机污染物的降解研究
宏观三维多孔类Fenton纳米催化剂的组装制备及其降解有机污染物的增效机制
产表面活性剂菌对焦化废水中多环芳烃好氧生物降解的增效机制
铁基双金属/石墨烯的制备及其吸附与可见光Fenton降解染料的性能和机理研究