This project proposes to study arc-transitive digraphs, and aims to establish a systematic theory for studying arc-transitive digraphs, extending important theory and results of graphs to digraphs. It also aims to solve various important problems regarding arc-transitive digraphs. In particular, it will characterise permutation group pairs which are in-neighbour action and out-neighbour action of an arc-transitive digraph, and further characterise local action. For locally primitive digraphs, find conditions under which the order of vertex stabiliser is upper-bounded by a function of the valency. This project will also study vertex quasiprimitive arc-transitive digraphs, and 2-arc-transitive digraphs, and aim to solve the existence problem of vertex-primitive 3-arc transitive, and give a classification of such digraphs.
本项目将系统地研究弧传递有向图,其主要目的是建立一个弧传递有向图的系统理论,推广弧传递无向图中的重要理论和结果到边传递无向图, 并解决关于弧传递有向图的若干重要问题。特别地,将刻画能够成为弧传递有向图的入局部作用和出局部作用的置换群对;将进一步刻画弧传递局部作用;对于局部本原有向图,将刻画点稳定子群的阶有一个度数的函数为上界的条件。本项目也将刻画点集合上拟本原的弧-传递图,和2-弧传递图;将解决悬而未决的点本原3-弧传递图的存在性问题,并对这类图给出一个分类。
本项目进展顺利,基本上是按照计划书进行的,其中最重要的问题基本得到了解决。已经在包括Advances in Mathematics, Transactions of Amer. Math. Soc., Journal of Algebra, Journal of Combinatorial Theory A/B等杂志上发表论文20余篇。解决了群论与代数图论领域里的多个重要问题,包括代数图论领袖专家Praeger (1990's) 三十年前提出的点本原有向2-弧传递图的存在性问;Wielandt(1960’s)开始研究的包含正则子群的本原群的分类问题;一个因子是可解群的几乎单群的因子分解问题;及拟本原图的正则嵌入问题。其中一些结果和所发展的方法正在被应用去解决群论和代数图论中的各种各样的问题,也启发了后续的一个重点项目的几个研究课题的提出。
{{i.achievement_title}}
数据更新时间:2023-05-31
High Performance Van der Waals Graphene-WS2-Si Heterostructure Photodetector
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
基于多色集合理论的医院异常工作流处理建模
Influence of calcination temperature on the photocatalytic performance of the hierarchical TiO2 pinecone-like structure decorated with CdS nanoparticles
Functionalization and Fabrication of Soluble Polymers of Intrinsic Microporosity for CO2 Transformation and Uranium Extraction
有向图与符号有向图的谱理论研究
s-距离传递(有向)图的有限性猜想研究
有向图的泛弧和点不相交圈相关问题的研究
半弧传递图与半边传递图的研究