In the near future, both development of novel and efficient smart membrane materials and enhancement of smart membrane processes will be the main focus of research in the field of smart membranes. In this proposal, the idea that the amphiphilc diblock smart copolymer fabricated by living free-radical polymerization are blended with membrane materials and cast into microporous smart gating membranes with smart hydrophilic block "gates" exposed on the membrane surface and pores via immersion precipitation method has been developed innovatively. It plans to precisely control the chemical structure and composition, shape, molecular weight and distribution, polymerization degree of the amphiphilic diblock smart copolymer at first, to systematically study the controllable law of the parameters (such as chemical structure) of smart copolymer and the precise physical/chemical microstructure of smart gating membrane, as well as the controllable law of the precise physical/chemical microstructure and performance of smart gating membrane, to verify the key issues such as the mechanism of kinetic phase separation during the membrane-forming, to achieve precise and reliable regulation of performances such as stimuli-responsiveness of smart gating membranes, to gain the microporous smart gating membranes with good stimuli-responsiveness, stability, reversibility and reproducibility, to establish serial design and technology of controllable fabrication of smart gating membranes, and to provide essential theoretical foundation and guide of design and both controllable and reliable preparation of the novel smart gating membrane materials with high-efficiency.
开发新型高效的智能膜材料和强化智能膜过程将成为智能开关膜未来的两个研究重点。本项目创新性地提出将可控自由基聚合法制备的两亲嵌段共聚智能高分子共混于聚合物膜材料中,借助浸没沉淀相转化法制备膜表面和膜孔表面富集智能开关的微孔智能开关膜。拟从两亲嵌段共聚智能高分子的化学结构和组成设计、形状、分子量和分子量分布、亲疏水链段聚合度的精确控制入手,系统研究其结构等参数与智能开关膜精细微观物理/化学结构之间的可控性规律,深入研究智能开关膜的精细微观物理/化学结构与其性能的可控性规律,探明铸膜过程中的动力学分相机理等关键问题,实现对智能开关膜刺激响应特性等性能的精确和可靠调控,获得具有良好环境刺激响应特性、稳定性、可逆性和可重复性四要素的微孔智能开关膜,建立智能开关膜的系列化设计和可控制备工艺,为新型高效智能开关膜材料的设计和可控可靠制备提供必要的理论基础和指导。
开发新型高效的智能膜材料和强化智能膜过程将成为智能膜未来的两个研究重点。本项目采用可控自由基聚合法设计并可控制备了具有不同刺激响应特性的两亲嵌段共聚智能高分子,并将其作为添加剂共混于聚合物膜材料中,借助相转化法制备膜表面和膜孔表面富集智能开关的智能膜。项目成果如下:.1、采用原子转移自由基聚合法(ATRP)可控制备聚苯乙烯-嵌段-聚丙烯酸(PS-b-PAA)pH响应两亲嵌段高分子;采用可逆加成-断裂链转移聚合法(RAFT)可控制备了聚(甲基丙烯酸甲酯)-嵌段-聚(N-异丙基丙烯酰胺-共聚-苯并-15-冠-5-丙烯酰胺-共聚-丙烯酰胺)的钾离子响应型两亲嵌段高分子,探明了亲水链段的化学组成和聚合度等物理/化学结构的可控制备规律。.2、采用相转化法共混两亲嵌段智能高分子,可控制备了pH响应型智能膜,探明了PS-b-PAA嵌段智能高分子的含量和嵌段聚合度等特性与智能膜的微观结构和响应性能之间的影响规律。实现了智能开关膜刺激响应特性等性能的精确和可靠调控,获得具有良好环境刺激响应特性、稳定性、可逆性和可重复性的智能膜。.研究结果为新型高效智能开关膜材料的设计和可控可靠制备提供必要的理论基础和指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
物联网中区块链技术的应用与挑战
人工智能技术在矿工不安全行为识别中的融合应用
人β防御素3体内抑制耐甲氧西林葡萄球菌 内植物生物膜感染的机制研究
粉末冶金铝合金烧结致密化过程
拉应力下碳纳米管增强高分子基复合材料的应力分布
PET反应性共混,嵌段共聚及纤维成形研究
含软硬段的嵌段共聚高分子液晶及其与热塑性树脂的共混
RAFT聚合、开环聚合与Click化学结合可控制备智能多嵌段共聚物
嵌段共聚物及其共混物中的自组装结构