High velocity sliding process under high current load was in an environment with strong electromagnetic field, transient temperature field and stress field. So there would be relative movement on contact surface, producing joule heat, electric arc and other a series of phenomenon, which would produce adverse influence on armature and sliding electrical contact state. It was difficult to realize real time monitoring for the state of motor armature, sliding contact surfaces and the slide. The testing method about state parameter now see was also very limited.The project was planed to carry out velocity sliding electrical contact state parameter monitoring under high current load and research of characterization technology and numerical analysis method. The real-time monitoring methods of transient temperature field and contact vibration of contact region were mainly studied. Based on Planck blackbody radiation law, the transient high temperature measurement system was established. Through numerical simulation and finite element simulation research, the surface temperature field and its influence on rail surface damage were analyzed. The test method of transient micro-vibration of the rail was studied. Optical fiber displacement sensor was adopted to obtain the vibration amplitude of the key parts of the rail. The test system and related experiments was also carried. A software platform was established which had the function of analysis of the time -frequency domain. Modal analysis of vibration based on Block Lenclos model was used to study the vibration characteristic of the rail. Considering the effect of sliding velocity, contact current and other factors, a mathematical model was established to characterize the high-speed sliding electrical contact state, and it could be used as a technical basis for optimization design of electric contact device,reducing rail damage and improving rail life.
大电流载荷下高速滑动过程处于电磁场、温度场、应力场耦合环境,会伴随发生机械效应、热效应或电效应,使接触状态产生改变。而对于运动元件、滑动接触面及滑轨的状态实时监测很困难,现有有关状态参数的测试手段也非常有限。本项目拟开展高速滑动电接触状态参数的监测、表征技术的研究。以滑动接触面瞬态温度、滑轨振动为主要状态参量,研究其动态监测与分析方法。基于普朗克黑体辐射定律,研究表面瞬态高温测试系统,基于有限元理论,研究瞬态热分析方法,计算温度场的分布。研究基于光学微位移测量原理的轨道微振动的测量方法,通过时频分析和模态分析,获取滑轨的振动响应和模态参数,研究电接触元件的动态特性。最后,考虑滑动速度、接触电流等因素的影响,初步建立表征高速滑动电接触状态的数学模型,为优化电接触装置设计、减轻轨道损伤、提高轨道寿命提供技术支撑。
本项目开展了高速滑动电接触状态参数的监测及接触状态表征技术的研究。.针对大载流下高速滑动电接触表面瞬态温度场进行相关测量与分析研究,对接触表面瞬态温度场进行热分析,建立高速滑动电接触试验机温度场计算模型,系统分析了模型在不同载流、不同速度等条件下的温度场分布及最高温度变化情况。采用非接触式辐射测温方法,对大载流高速滑动电接触瞬态温度进行测量,并将实际测量数据与有限元模拟结果相结合,分析速度以及电流载荷的变化对接触表面温度场的影响。.针对高速滑动电接触动力发射装置的发射轨道,开展损伤检测识别研究。利用光纤光栅传感器,研究了一种基于振动结构应变模态分析理论的轨道损伤识别方法。对应变模态损伤识别方法进行了仿真分析,研究了轨道不同位置以及不同程度损伤下的应变模态变化。.采用三维信息测量系统对不同材料导轨不同位置处的损伤形貌信息进行采集,测量到的三维点云数据为损伤识别的核心处理数据。研究损伤区域点云特征提取方法,实现对损伤区域的准确检测与定位,进而根据检测的损伤信息精确计算出损伤的损失体积及质量与识别损伤种类。对材料烧蚀后的表面形貌、质量损失及烧蚀深度进行分析,进一步研究了解大载流下接触表面瞬态高温对接触材料的烧蚀影响。.研究成果可为优化电接触装置设计、减轻轨道损伤、提高轨道寿命提供技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
瞬态波位移场计算方法在相控阵声场模拟中的实验验证
高速滑动电接触下的磨耗稳定态研究
大电流高速滑动电接触下的速度转捩研究
大电流高接触压强高速滑动电接触熔化磨损特性研究
脉冲大电流高速滑动电接触金属沉积层的形成机理及电接触特性