基于辛几何理论的散射场焦散区计算方法的研究

基本信息
批准号:69971001
项目类别:面上项目
资助金额:13.00
负责人:吴先良
学科分类:
依托单位:安徽大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:付彪,孙玉发,汪继文,李世雄,宋开宏,赵瑾,吴萍,唐静,李民权
关键词:
凹面散射辛几何理论焦散区
结项摘要

In high-frequency conditions, high-frequency approximation methods are applied to solve the electromagnetic wave equation. These methods, which are often used, are geometrical optics (G.O.) approximation, geometrical theory of diffraction (G.T.D.), physical optics (P.O.) approximation and etc. The solutions of the electromagnetic wave equation in the non-caustic region obtained by the methods are satisfactory. But the ones in the caustic region are not ideal. Some methods are not valid in the caustic region. So, it is very necessary to develop a new method for finding the solutions in the caustic region. In mathematical point of view, there is a singularity in the caustics in physical space, but the singularity is not a real one. In fact, the solutions of the electromagnetic wave equation are not singular. It is because the primarily simple expression of G.O. approximation is not suitable for the caustic region that the solutions are singular. In this project, a new symplectic geometrical high-frequency approximation is used. We have made the following research work 1)Study on the geometrical high-frequency approximation theory. 2) Solution on electromagnetic wave propagation in a reflector by symplectic geometrical high-frequency approximation 3) Solving the propagation of electromagnetic wave in the inhomogeneous media Meanwhile, the method for extending the solutions obtained by to the shadow region is also presented. It proves to be satisfactory as well.The method deserves further research.

本课题主要采用辛几何理论的高频近似方法,求解凹面体散射中焦散区散射场的问题。在辛空间中建立几种典型具有焦散现象的模型,并在辛空间中计算出焦散区的场值。利用含参变量的付立叶逆变换把辛空间中焦散区的解变换到实际的物理空间中。本项目首次引入辛几何理论及辛算法来处理电磁场焦散区的问题,是一个值得探讨的新方法。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于旋量理论的数控机床几何误差分离与补偿方法研究

基于旋量理论的数控机床几何误差分离与补偿方法研究

DOI:
发表时间:2019
2

现代优化理论与应用

现代优化理论与应用

DOI:10.1360/SSM-2020-0035
发表时间:2020
3

多元化企业IT协同的维度及测量

多元化企业IT协同的维度及测量

DOI:
发表时间:2017
4

末次盛冰期以来中国湖泊记录对环流系统及气候类型的响应

末次盛冰期以来中国湖泊记录对环流系统及气候类型的响应

DOI:DOI: 10.11821/dlxb201611003
发表时间:2016
5

基于LANDSAT数据的湿地动态变化特征研究——莫莫格保护区

基于LANDSAT数据的湿地动态变化特征研究——莫莫格保护区

DOI:
发表时间:2016

吴先良的其他基金

相似国自然基金

1

计算几何光学的焦散问题的方法

批准号:10826027
批准年份:2008
负责人:殷东生
学科分类:A0504
资助金额:3.00
项目类别:数学天元基金项目
2

关键动力学问题的辛对偶和辛几何理论研究

批准号:10772014
批准年份:2007
负责人:邢誉峰
学科分类:A0813
资助金额:30.00
项目类别:面上项目
3

基于高阶辛算法的时域电磁散射计算理论及其应用研究

批准号:60671051
批准年份:2006
负责人:吴先良
学科分类:F0119
资助金额:30.00
项目类别:面上项目
4

辛几何与微分几何

批准号:10801002
批准年份:2008
负责人:王嵬
学科分类:A0108
资助金额:16.00
项目类别:青年科学基金项目