Immediate and early loading are identified as risk factors of osseointegration. Mechanical stimuli has significant effects on occurrence and development of osseointegration. FAK, which is considered as mechanotransduction key enzyme, plays an important role during this process. Our previous research showed that FAK and its downstream signal transduction pathway PI3K/MAPK could regulate osteoblast cells activity on titanium disks without mechanical stimuli. However, the signal transduction pathways associated with mechanical stimuli are not the same as physiological process. The function of PI3K and MAPK pathway in the mechanical stimuli associating osseointegration is unclear, the mechanotransduction mechanism still need further study. In this project, therefore, we are going to dissect the function of mechanical stimuli on osseointegration and the mechanism of FAK-PI3K/MAPK pathways in this process by cells experiments in vitro. On the other hand, we will establish animal model of immediate loading implants as well in order to analyze the influence of mechanical loading on osseointegration. The results of this project will provide crucial evidences for the possibility of improving osseointegration by mechanical stimuli and shortening the healing time of dental implants without loading, which will significantly improve life quality of dental implants patients.
早期和即刻负载是影响骨结合的风险因素,力学刺激对骨结合的发生与发展具有重要调节能力,FAK在这一过程中发挥首要功能,是力学信号向生化信号转导的关键酶。课题组前期研究发现无负载条件下,FAK及其下游信号通路PI3K和MAPK对成骨细胞骨结合行为具有显著的调节能力。但是,力学刺激引起的信号传导与正常生理情况并不完全相同,PI3K和MAPK通路是否参与力学刺激对骨结合的调节过程尚未明确,"力学刺激→化学信号" 转导的机理也有待更深入的研究。本课题在前期实验的础上,以FAK连接力学刺激与细胞生化信号为切入点,建立体外细胞加力模型,研究力学刺激对骨结合早期细胞行为的影响及FAK-PI3K/MAPK信号传导通路在此过程中的作用和具体信号调节机理;并建立体内种植体加力模型,研究力学刺激对实验动物体内种植体骨结合过程的影响。研究结果将为利用力学刺激改进钛材料骨结合和缩短种植负载等待时间奠定必要的实验基础。
随着即刻和早期负载在口腔种植中的普及,力学刺激在骨结合发生发展中已成为一个不可忽视的因素。实现力学刺激条件下骨结合速度和质量的优化是缩短种植治疗周期的必要前提。然而,现有研究多采用“生物材料-细胞”的模式,往往忽视力学刺激这一关键因素,对力学刺激与钛材料共同作用于细胞的生物学效应及分子机制的研究鲜见。FAK作为力学信号转化为生化信号的关键酶,在力学刺激骨结合发生发展中发挥首要功能。课题组前期研究还发现,在无负载条件下,FAK 及其下游信号通路 PI3K 和 MAPK 对成骨细胞的骨结合具有显著的调节能力。本课题在前期实验的基础上,以FAK连接力学刺激与生化信号为为切入点,建立基于流体力学的体外细胞加力模型,采用“力学刺激-钛材料-细胞”的模式研究力学刺激对骨髓间充质干细胞生物学响应的影响,筛选促进骨结合的力学参数;对FAK进行敲减或过表达,研究FAK在力学刺激促进骨结合过程中发挥的作用,进一步研究FAK下游PI3K/MAPK 信号传导通路在此过程中的作用和具体信号调节机理;并建立犬的种植体加力模型,研究力学刺激对体内种植体骨结合过程的影响。研究结果发现,一定阈值内的力学刺激可以促进骨髓间充质干细胞的成骨分化,FAK在此过程中起到了至关重要的作用,其调控下游PI3K/MAPK 信号传导通路的激活,最终促进成骨基因及蛋白的表达从而实现骨再生;体内模型进一步证明阈值内力学刺激能够促进钛种植体早期骨结合。研究结果将为从力学角度考虑种植体设计和促进更快更好骨结合,甚至从力学角度促进骨再生提供理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations
The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects
FAK-PI3K/Akt通路对钛材料骨结合的影响及其调控机理研究
力学刺激和纳米银修饰多级微纳钛表面对种植体骨结合性能的影响及机理研究
Pannexin1通道蛋白与p38MAPK信号通路在应力刺激促进人MSC增殖成骨中的作用
Wnt/β-catenin信号通路在钛颗粒诱导成骨细胞性骨形成减少中的作用及机制