With the integration of large scale renewable energy generation, the contradictions between generators and networks, and among different generators in power systems become more and more serious. These contradictions make collapse and overlap between the outage reserve and the reserve for non-dispatchable generators and loads. These contradictions are aggravated by reserve validity which is affected networks. Therefore, the current reserve strategies cannot accommodate the new situations. In this project, new reserve strategies considering the effects of generators and networks are proposed. Firstly, the reserve strategies considering generators is analyzed. Since the existing reserve strategies cannot well respect both accuracy and computation efficiency due to the complexity of reliability indices, new reserve strategies are proposed. The proposed reserve strategies can fully consider the scenario completeness, and can get a good balance between accuracy and computation efficiency. Secondly, the effect of network is analyzed. Finally, new models and methods are proposed considering both generators and networks. Furthermore, the models which consider change of network topology, voltage constraint, and characteristics of generator of future system are all proposed. The research addresses the critical problems of power system security and economic operation, coincides with the development of smart grids, and has significant theoretical and realistic meanings.
随着大规模可再生能源发电的引入,电力系统中不同特性电源间、电源与电网间矛盾日益突出。这使得为可再生能源发电、负荷配置的备用,以及事故备用间呈现冲突和交叠,源网间牵制加剧,导致目前备用有效性度量及备用决策的方法难以应对。对此,本项目提出源网牵制的备用决策方法。首先研究源平衡下的备用决策。针对概率性源备用决策方法存在着可靠性指标计算过于复杂,无法兼顾精度和计算效率的问题,本项目提出能充分考虑场景完备性,兼顾模型精度与求解效率的源备用决策的新方法。在此基础上,进一步揭示网络对备用决策的影响机制,从而建立源网牵制机制下备用决策新的模型和方法,以及扩展到考虑网络拓扑结构变动、电压支撑能力和未来电网电源构成特点的综合备用决策方法。本项目的开展不仅解决当前电力系统安全经济运行中面临的关键问题,而且顺应智能电网的发展趋势,具有明显的紧迫性和理论、技术储备意义。
随着风电光伏等可再生能源接入的比例越来越高,系统中电源,电网之间的矛盾日益突出,源网之间的牵制日益加剧。在此场景下,备用配置的决策,应当充分的考虑源网的影响。本项目的研究分为三个层次:源牵制下的备用决策,网牵制下的备用决策,源网牵制下的备用决策。首先,本项目针对概率性源备用决策方法中可靠性指标计算过于复杂的问题,对以失负荷概率和期望缺供电量为代表的可靠性指标进行了深入分析,揭示了失负荷概率和期望缺供电量的分段线性特性,就此提出了备用的快速优化模型。进一步,深入分析了备用优化模型中存在着多重折中的现象,分析了主要折中,次要折中的影响,由此提出了考虑机组容量与平均运行成本折中的备用优化模型。在深入分析带可靠性约束的模型与带备用约束的模型的基础上,提出了基于带典型事故约束的机组组合的备用优化模型,将高阶非线性的失负荷概率转化为一系列的线性约束并提出约束添加法求解。分析了考虑网络后线路故障和支路潮流约束对计算效率的影响,提出了新的约束筛选法和分解后验法,实现了较好的计算效率。提出了考虑有功无功牵制和OTS影响的备用优化模型,以应对未来电力系统的发展。本项目的开展不仅解决当前电力系统安全经济运行中面临的关键问题,而且顺应智能电网的发展趋势,具有明显的紧迫性和理论、技术储备意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
黄河流域水资源利用时空演变特征及驱动要素
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
基于源网协调的新建风电场装机容量决策理论研究
含大规模风电的电力系统备用需求多尺度优化决策研究
扰动下的复杂动力网络的脉冲牵制控制及同步
多源大数据环境下胰腺肿瘤辅助诊断决策方法研究