With the development of economic, the power consuming is increasing more and the stability of the power system becomes very important. The load frequency control is an important control goal in the power system. The purpose of load frequency control is used to control the power generation and power consuming. If they are not equal, the frequency will deviate the nominal value. Frequency error can cause the damage of electrical appliance. In severe case, it can even cause the blackout of the power system. The traditional sliding mode control method has been applied to the load frequency control, which has the obvious chattering effect. This project firstly focus on the high order sliding mode control method, which can be applied to the load frequency control of interconnected power system with nonlinearities. Firstly, the model of the three area interconnected power system with nonlinearities is constructed. Secondly, the new high order sliding mode control method is designed. In order to overcome the uncertainty of parameter variation and load disturbance, the new adaptive high order sliding mode control method is also designed. Finally, the two new methods will be applied to the load frequency control based on three area interconnected power system with nonlinearities and the stability of the two methods will be proved mathematically. This project mainly focus on the research of the application of the high order sliding mode control methods in the load frequency control, which can be treated as a bench work for the theory and technique basis for the load frequency control of interconnected power system with nonlinearities.
随着社会经济的不断发展,居民用电量逐年攀升,用户的用电需求也不断提高。因此,电力系统的安全稳定运行显得尤为重要。其中,负荷频率控制是电力系统的重要问题之一,目的是使发电量和负载用电量之间达到平衡。若两者失衡,则会导致频率波动,容易造成电力设备的损坏,严重情况下还会导致断电。传统的滑模控制方法也被应用于负荷频率控制问题,但是抖振性较大。本项目针对互联非线性电力系统的负荷频率控制问题,首次对高阶滑模控制方法的应用进行研究。本项目首先建立三区域互联非线性电力系统负荷频率控制的模型。其次,设计了新的高阶滑模控制方法。由于参数变化和外界干扰的不确定性,设计了新的自适应高阶滑模控制方法。最后,把这两种新方法应用到三区域互联非线性电力系统负荷频率控制中,同时证明这两种方法的稳定性。本项目旨对高阶滑模控制方法在负荷频率控制中的应用进行研究探索,为互联非线性电力系统的负荷频率控制奠定理论和技术基础。
随着经济的发展,人们对电力质量的要求越来越高。电力系统负荷频率控制是电力系统的一项重要指标,频率的波动会引起电网的不稳定,严重情况下还会导致大断电。因此,本项目的研究具有重要意义。本项目首次采用自适应高阶滑模控制方法来控制互联非线性电力系统的负荷频率,而且系统中包括三种不同的涡轮机。项目设计了两种新的方法:高阶滑模控制和自适应高阶滑模控制方法。这两种方法都能使电力系统的频率偏差和区域控制误差都趋于零,而且抖振性明显减小。所采用的自适应高阶滑模控制与二阶滑模控制方法做了比较,系统的抖振性更加小。相应的成果发表了4篇SCI论文, 其中两篇属于中科院二区。另外,授权了4项发明专利,还有两项发明专利进入实审中。项目的主要目的使得系统的抖振性明显减小,可以提高用电质量,同时防止意外断电的发生,对国民经济及生活具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于被动变阻尼装置高层结构风振控制效果对比分析
带有滑动摩擦摆支座的500 kV变压器地震响应
基于腔内级联变频的0.63μm波段多波长激光器
现代优化理论与应用
新产品脱销等待时间对顾客抱怨行为的影响:基于有调节的双中介模型
基于滑模控制和观测器的新能源互联电力系统负荷频率控制研究
含风电互联电力系统区间振荡高阶滑模阻尼控制研究
多区域互联电力系统负荷频率模糊自适应控制研究
多区域互联电力系统的分布式预测负荷频率控制研究