Non-contact linear transportation based on traveling wave is suitable for the manufacture of fragile wafers with large surfaces. The major advantages lie in no surface damage, lower scrap rate and friction free. In this project the mechanism of the traveling wave used in solar photovoltaic industry as well as the multi-field coupled dynamics will be studied. By modeling the acoustic field near the radiation surface and deriving high order solutions, the nonlinear behaviors will be discussed, the pressure distribution and traveling force will be calculated based on the model. According to the multi-field coupling dynamic analysis on the guide-film-wafer system, the mapping relationships between the parameters will be built. The simulations and design optimizations of driving-transfer system will be presented. To improve energy efficiency and transfer quality, the impedance matching will be calculated based on equivalent circuit and experimental measurements. We'll also design solar polycrystalline silicon wafer oriented transportation system, including drive controllers and precise positioning software. The transportation performances such as load capacity in unit area, acceleration, stability will be measured on the system. This project will present high accuracy mathematic models of traveling wave field, and is also important in multi-field coupled system dynamics. As a theoretical tool for non-contact transportation and manipulation, this project will provide fundamental supports to enhance the performance of PV semiconductor manufacturing equipments.
超声行波式非接触传输技术适用于大面积薄型易碎器件的制造过程,具有避免器件表面划伤、无摩擦等特点。本项目研究基于超声行波驱动的太阳能级硅片非接触直线传输系统及其多场耦合动力学特性。通过建立行波声场的高精度数学模型及其高阶求解方法,分析挤压气膜中的非线性性,定量描述行波声压分布及水平传输力;对导轨-气膜-硅片进行多场耦合动力学分析,建立各个参数之间的映射关系;对驱动-传输系统进行仿真和优化设计,建立等效电学模型,并结合实验测试进行机械/电学阻抗匹配,提高系统行波传播和机电转换效率;设计面向太阳能级多晶硅片的非接触传输与实验测试平台,开发驱动控制软件及精密定位方案,测试系统各项性能指标。本研究在行波声场的数学建模和非接触传输系统的多场耦合动力学分析方面具有重要理论研究价值,研究成果将为行波非接触式传输操作提供理论指导,为高品质光伏半导体制造装备的增效和性能升级提供技术支持,具有实际应用前景。
超声行波式非接触传输技术适用于大面积薄型易碎器件的制造过程,具有避免器件表面划伤、无摩擦等特点。本项目研究基于超声行波驱动的太阳能级硅片非接触直线传输系统及其多场耦合动力学特性。经过三年的努力,本项目已经完成了预期研究成果,解决了两个关键科学问题。揭示了行波非接触传输的机理,建立了近声场行波非线性动力学模型,提出了气压分布、悬浮力和水平传输力定量计算方法及稳定性传输必要条件,根据悬浮推进装置的多场耦合动力学分析,提出了驱动和悬浮推进装置进行一体化仿真和设计优化方法,最后搭建了实验原型系统,开发了智能驱动电源及运动控制软件,形成了一套面向大面积薄型硅片的非接触传输系统的设计优化方法、精密驱动定位方案和控制算法。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
基于多模态信息特征融合的犯罪预测算法研究
宽弦高速跨音风扇颤振特性研究
基于二维材料的自旋-轨道矩研究进展
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
非接触式超声检测方法的研究
深海非接触式涡旋吸盘吸附机理及实验特性研究
双非接触式高速旋转超声电火花加工系统及工艺机理研究
共轴并联式环形行波超声波电机结构动力学模型及实验研究