The reasonable construction of function-oriented structures and devices at micro/nanoscale is crucial to the development of photonic integrated circuits for information processing and communicating. Organic small molecules have great advantages in these fields because they exhibit high photoluminescence quantum efficiency, color tunability, assemble behavior and size-dependent optical properties. However, because of the poor understanding of the relationship among molecular structures, cooperate assembly process and optical performance manipulation of multiple organic systems, the extension of nanomaterials to binary complex systems and realization of multi-function optical element remains a great challenge. In this project, based on the purpose of realizing various miniature photonic devices, we will design and select two or more kinds of organic molecules, and construct heterostructure via different assembly method. The cooperative molecular assembly mechanism with guiding significance of the heterostructure will be investigated from the on-site observation of the assembly process combined with the theoretical calculation of the intermolecular interaction. Then we will utilize the structure characteristic and the photonic properties of the heterostructure to construct various functional devices, including optical switch, photonic routers, all optical logic gates and so on. The results will give a useful enlightenment for the development of organic nanophotonic and devices design.
在微纳米尺度上可控构筑功能导向的微纳结构和光子学元件对将来集成光路的实现至关重要。有机小分子具有荧光量子效率高、颜色可调、易于聚集等特点,在构建特定光学功能的微纳结构方面有很大优势。然而,由于缺乏对多组分的有机分子结构、协同组装过程、材料光学性能间相互关系的系统理解,在将有机纳米材料扩展至二元复合体系进而实现多功能的光学元件方面遇到了很大阻碍。本项目拟以光子学功能元件为导向,根据所涉及的微纳结构和光物理过程,设计和选择两种或多种有机组分,通过不同的组装手段制备复合微纳结构;结合原位观测协同组装过程和理论计算不同分子间相互作用力的手段,提出具有指导意义的协同组装机理;利用复合材料的结构特征及光和物质相互作用特性,实现光开关、光路由、全光逻辑门等光子学元件,为后续有机纳米光子学的研究和与器件设计的进一步开展扩展思路。
本项目围绕有机复合微纳结构的可控制备与光学性能研究,基于预期的光学功能元件,设计和选择两种有机小分子,制备有机复合微纳异质结并实现其光学应用。本项目前期研究顺利,将超长有机磷光材料引入到之前全荧光材料的微纳体系中,利用磷光材料和荧光材料在液相条件下的协同组装,获得两种主干材料不同的树枝状微纳异质结。通过原位观测其协同组装过程和理论计算分析分子间的作用力和晶格条件,清楚的阐述了复合微纳结构的协同组装机理,并实现其在多重防伪领域的潜在应用。我们的项目研究了“光学功能-复合微纳结构-有机小分子”的相互关系,为有机光功能材料的设计和应用提供了一条新思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
论大数据环境对情报学发展的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
仿生超滑微纳复合结构表面防覆冰机理及其可控制备
超双疏微纳复合结构SERS基底的设计及其双光子3D打印制备
智能梯度微纳结构的制备及其浸润行为可控诱导研究
新型多光子激发微纳激光的设计和生物光子学应用探索