广义分枝过程与带跳随机积分方程

基本信息
批准号:11901570
项目类别:青年科学基金项目
资助金额:25.00
负责人:李培森
学科分类:
依托单位:北京理工大学
批准年份:2019
结题年份:2022
起止时间:2020-01-01 - 2022-12-31
项目状态: 已结题
项目参与者:
关键词:
带跳随机积分方程GaltonWatson过程广义分枝过程分枝过程
结项摘要

Branching processes are models for the evolution of populations of particles. Those processes constitute an important subclass of Markov processes.In most realistic situations, however, this property is unlikely to be appropriate. This consideration has motivated the study of generalized branching processes, which may not satisfy branching property. Such a process is constructed as the strong solution of a stochastic equation driven by a Gauss noise and a Poisson noise. Special cases of this general model include the so-called stochastic logistic growth model and the CIR model studied recently by several authors. Hence, the study of stochastic equations with jumps is of urgent demands by the society. At the same time, the study of stochastic equations with jumps can also bring new methods to the research of generalized continuous branching processes...On the theoretical side, based on existing research we will study the boundary classification, the speed of coming down from infinity, the long-time behavior and ergodicity of the process. On the application side, we are going to construct mathematical model for some biology systems by using stochastic integral equations with jumps.

分枝过程通常用于描述人口演化,是一类非常重要的马尔科夫过程。分枝过程满足的一个基本假设是群体内每个个体的行为相互独立。然而在实际中这一假设很难满足。为了去掉这一假设,我们引入了广义分枝过程。这类过程可通过由Gauss白噪声和Poisson随机测度驱动的带跳随机积分方程来构造。该方程涵盖生态学中常见的logistic增长模型和金融学中常见的CIR利率模型。因此研究带跳随机积分方程不仅对广义分枝过程有重要理论意义,还有迫切的社会需求。..本项目将会研究广义分枝过程和相关的带跳随机积分方程解的边界分类、从无穷远点出发的速度估计、过程的长时间行为以及遍历性等问题。我们还将建立带跳随机积分方程在生物学中的应用。

项目摘要

分枝过程通常用于描述人口演化,是一类非常重要的马尔科夫过程。分枝过程满足的一个基本假设是群体内每个个体的行为相互独立。然而在实际中这一假设很难满足。为了去掉这一假设,我们引入了广义分枝过程。这类过程可通过由Gauss白噪声和Poisson随机测度驱动的带跳随机积分方程来构造。该方程涵盖生态学中常见的logistic增长模型和金融学中常见的CIR利率模型。本项目研究了广义分枝过程和相关的带跳随机积分方程解的边界分类、从无穷远点出发的速度估计、过程的长时间行为以及遍历性等问题。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

DOI:10.3799/dqkx.2020.083
发表时间:2020
2

钢筋混凝土带翼缘剪力墙破坏机理研究

钢筋混凝土带翼缘剪力墙破坏机理研究

DOI:10.15986/j.1006-7930.2017.06.014
发表时间:2017
3

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

DOI:10.11999/JEIT210095
发表时间:2021
4

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

DOI:10.19596/j.cnki.1001-246x.8419
发表时间:2022
5

空气电晕放电发展过程的特征发射光谱分析与放电识别

空气电晕放电发展过程的特征发射光谱分析与放电识别

DOI:10.3964/j.issn.1000-0593(2022)09-2956-07
发表时间:2022

李培森的其他基金

相似国自然基金

1

连续时空分枝过程与相关带跳随机方程

批准号:11771018
批准年份:2017
负责人:杨叙
学科分类:A0210
资助金额:49.00
项目类别:面上项目
2

测度值分枝过程与相关带跳随机偏微分方程

批准号:11401012
批准年份:2014
负责人:杨叙
学科分类:A0210
资助金额:23.00
项目类别:青年科学基金项目
3

带跳随机积分离散化的渐近误差分布研究

批准号:11701331
批准年份:2017
负责人:王汉超
学科分类:A0211
资助金额:23.00
项目类别:青年科学基金项目
4

带跳Levy过程驱动的随机微分方程解的研究

批准号:11126188
批准年份:2011
负责人:尹湘锋
学科分类:A0210
资助金额:3.00
项目类别:数学天元基金项目