Unmanned metamorphic vehicle is a high-tech ground mobile carrier at the forefront of research. It has the advantage of the rapid driving on structural pavement and easy pass on unstructured pavement such as steps, uneven pavement, narrow passageway, gully and so on. As for the stability for the fast and global reconfiguration, the following studies are carried out. In order to achieve reconfiguration, the structural optimization design and topological position optimization of unmanned metamorphic vehicles are carried out in the aspect of metamorphic mechanisms. Based on the research of mapping relation and topological location distribution of metamorphic components, the models of adjacency matrix and two color topological graphs of each state are established to describe the connection relation between the metamorphic components and the properties of the kinematic pair. The elementary transformation matrix is established, and the digitized metamorph of each state is realized. As for fast and global reconstruction process between unmanned metamorph vehicle state and human like state. Kinematic and dynamic models are established, its kinematic and dynamic characteristics are studied, and the nonlinear dynamic analysis is carried out from the viewpoint of stability. Based on that, the stability control of fast and global reconstruction under different motion states is studied and realized. Unmanned metamorphic vehicle is widely applied not only in military area, but also in civil field, and the above stduies will have important theoretical significance and engineering application value.
无人变胞车辆是当前处于前沿研究领域的高科技地面移动载具,它实现了结构路面的快速行驶及非结构路面(譬如台阶、不平路面、狭窄通道、沟壑等)的高通过性的统一。针对其快速全局重构时的稳定性问题,从如下方面进行研究:在变胞机构学方面,对无人变胞车辆进行结构优化设计及布置拓扑优化;在对变胞构件映射关系及拓扑位置分布研究的基础上,建立了各构态的领接矩阵及双色拓扑图等模型,描述了变胞构件间的连接关系及运动副性质;建立了初等变换矩阵,实现了各构态的数字化变胞。针对无人变胞车辆汽车态与类人态间的快速全局重构过程,建立运动学及动力学模型,研究其运动学及动力学特性,以及从稳定性角度出发进行非线性动力学分析,在此基础上研究并实现其在不同运动状态下快速全局重构的稳定性控制。无人变胞车辆不仅在军事上有广泛应用,而且民用领域亦十分广阔,上述研究具有十分重要的理论研究意义及工程应用价值。
在汽车领域,传统的车辆基本都是轮式行驶,虽然在结构路面上能够实现高速行驶,但是在非结构路面或障碍路面无法行驶,而两足机器人虽然能够实现腿足式行走,在非结构路面上通过性好,但是不能快速移动且能耗大。本项目提出并设计了一种新型地面移动系统:无人变胞车辆,该车辆通过重构可以在四轮电驱动车辆与两足机器人之间重构变形,从而具有轮式快速行驶及腿足式行走的优异运动性能。基于国家自然科学基金项目的支持,截至目前,针对无人变胞车的研究内容如下:对重要的变胞构件进行轻量化设计;通过无人变胞车辆重构构态分析,建立各变胞杆件在重构时结合与分离的数学模型,并进一步建立各构态间变换的构态变换矩阵;建立变胞车辆重构的运动学模型及动力学模型,通过仿真对重构的运动性态进行分析;从重构稳定性角度出发,建立ZMP模型并进行重构稳定性分析,并进一步通过非线性动力学分析方法对重构的稳定性进行分析;为了提高重构的稳定性,对支撑态位姿(足着地位置)进行优化设计;对变胞车驻车重构的平顺性及稳定性进行运动控制;对驻车转向重构进行稳定性控制。通过上述研究,充分了解变胞车重构运动性态,掌握了其重构运动过程中系统稳定性的变化趋势与影响因素。支撑态足着地位置影响系统重构的固有稳定性,通过调质心滑块机构可以有效提高系统重构的稳定性。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
具有生物特征的变胞机构组成理论基础及重构方法
基于变胞自重构原理的鞋楦柔性夹具设计方法及应用研究
面向城区综合环境的无人驾驶车辆关键技术研究及验证
面向城区综合环境的无人驾驶车辆平台及关键技术研究