Transition metal oxides as catalysts for oxygen evolution reaction (OER) are considered as a potential substitute for traditional noble metal catalysts due to theirs storage-abundant, cost-effective and facile preparation. However, some adverse effects, such as nonideal inductive and stability, are still challenging for individual transition metal oxides used as electrocatalysts for OER. This project proposes to construct a high-efficiency electrocatalyst by in-situ synthesis of target oxides with activated carbon derived from wood nanofibers. The project mainly studies the use of carbon skeleton structure derived from wood nanofibers to construct a conductive network and realize the inhibition of migration and agglomeration of oxide nanoparticles during the heat treatment process, so as to achieve the balance of conductivity and stability of transition metal oxides. By means of modern characterization technology and theoretical calculation, we will reveal the synergistic effect and regulatory mechanism of woodiness carbon nanofibers load transition metal oxides nanocomposites, and realize the effective regulation of electrochemical active sites, OER catalytic activity and stability of the nanocomposite electrocatalysts, as a results, the woodiness carbon nanofibers supported transition metal oxides nanocomposite electrocatalysts with excellent catalytic activity and durability will be synthesized based on the above studies. The research of this project will not only provide new ideas for the development of low-cost and high-performance oxygen evolution electrocatalysts, but also provide theoretical basis and technical support for broadening the application field of wood fibers and improving the green and efficient utilization of wood resources.
过渡金属氧化物作为析氧催化剂因其原料来源丰富、成本低且制备简单被认为是极具潜力替代传统的贵金属催化剂。针对过渡金属氧化物弱导电性和稳定性差这一关键科学问题,本项目提出利用木质纳米纤维衍生的活性碳原位合成目标氧化物来构建高效能的析氧电催化剂,主要研究利用木质纳米纤维衍生的碳骨架结构来构建导电网络,并实现对氧化物纳米粒子在热处理过程中迁移团聚的抑制,从而实现对过渡金属氧化物导电性和稳定性的兼顾。借助现代测试表征技术和理论计算,揭示木质碳纳米纤维负载过渡金属氧化物纳米复合材料协同增效机理和性能调控机制,实现对该复合电催化剂活性位点、析氧催化活性和稳定性的高效调控,最终获得对析氧反应兼具高催化活性和高稳定性的碳负载过渡金属氧化物析氧电催化剂。本项目的研究将不仅有望为开发低成本、高性能的析氧电催化剂提供新的思路,还可以为拓宽木质纤维的应用领域,提高木质资源绿色高效利用提供理论依据和技术支撑。
高效水电解系统的开发对于绿氢的生产和未来清洁/可持续能源系统的建立至关重要。在电制氢系统中,电催化剂的选择是提高系统效率的关键。针对过渡金属基电催化剂弱导电性和稳定性差等问题以及林木资源高附加值利用的需求,本项目选用木材纤维和实体木材为主要研究对象,通过原位耦合、高温固相反应等方式,设计了一系列高性能木质资源衍生碳负载过渡金属氧化物及其衍生物纳米复合电催化产氢材料,通过多种非原位表征手段和电化学测试技术结合理论计算,系统探究了复合电催化剂的组成、微观结构、物化性质、表界面特性与其电催化性能的内在联系,阐明复合电催化剂的协同增效机理和性能调控机制。研究成果为研发低成本、高性能的电制氢材料提供重要的理论和实验依据,同时为扩展林木资源在电催化剂领域的应用奠定了科学的工艺技术路线。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
低轨卫星通信信道分配策略
金属氧化物异质结/碳纤维复合电催化材料的调控构筑及其电解水析氧性能研究
碳基过渡金属纳米催化材料构筑及其催化碳氧键活化性能研究
基于螺旋电纺的规整性碳纳米纤维负载金属氧化物微晶催化剂的制备及其对木质素制备酚类的选择性催化
低阻纳米纤维界面过渡金属氧化物负载及其选择性吸附催化性能研究