1、汇编了美国《数学评论》和《中国数学文摘》等从80年以来的有关凸性和它们在非线性规划中应用的文献目录。2、提出了许多广义凸函数,研究了它们的各种性质,指出国际著名运筹学专家Weir博士一篇论文的错误;澄清了拟凸函数推广到不变拟凸时一条等价性仍成立的错误认识。3、对已有凸性作了进一步探讨,获得了许多新性质,找出了各种凸性的相互关系。4、通过新、旧凸性函数探讨了非线性规划的最优性条件和对偶理论,特别在广义次似凸条件下,给出了Geoffrion真有效解的标量化和公式多目标规划与一般多目标规划在最优性条件上的统一性,给出了非线性规划解的充分条件和对偶理论,并对非线性规划高阶对偶性和充分性也作了许多探讨,获得了许多有用结论。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
监管的非对称性、盈余管理模式选择与证监会执法效率?
黄河流域水资源利用时空演变特征及驱动要素
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
物联网资源协同优化与组织管理的理论和方法
城市可持续发展管理理论和方法及其政策研究
用于交通管理的复杂拥挤环境下协同视频监控理论和方法研究
名牌产品创造发展及其战略管理理论方法与案例研究