The ever-increasing organic solid wastes (OSW) pose a tremendous threat on human beings environment, and the recovery and disposal of OSW are tightly related to the sustainable development of our society. In this project, we first set up a quick and accurate analytic system to obtain the detail information of pyrolytic compounds during the fast pyrolysis of OSW and investigate the thermochemical transformation and fate of C,N,S,P in OSW. On the basis of the understanding of the transformation mechanism, we tried to restrain the production of pyrolytic pollutants by optimizing the reaction parameters. Meanwhile, we proposed an approach to change the migration pathway of heteroatoms and introduce them into the carbon substrate to prepare heteroatom-doped carbon nanotubes (HDCNT) by combining the chemical vapor deposition method. This project demonstrated a environmentally benign and economical OSW recycling strategy which integrated the disposal of OSW, diminishment of pollutants, and preparation value-added HDCNT. The main contents of this project are as following: 1) analysis of the composition of pyrolytic products and their formation mechanism of representative OSW; 2)the migration and fate of heteroatoms and their effect on the production of pollutants during fast pyrolysis; 3) exploration of the controlling method of pollutants; 4)the feasibility of preparation of HDCNT and mechanism. In addition, we also set up a special analytic system for OSW fast pyrolysis. The implementation of this project would provide a theoretic support for cost-effective OSW recycling and settlement of the thorny environment issue.
有机固体废弃物(OSW)的资源化处置与利用是亟待解决的环境污染问题之一。本项目以OSW快速热解过程为研究对象,通过建立快速准确的在线分析方法,获得详细的OSW快速热解产物信息,阐明C、N、S、P的热化学转化与归趋机制;在此基础上,通过调控热解参数,抑制污染物的生成,同时改变杂原子的转化途径,结合碳的化学催化沉积,制备杂原子掺杂的碳纳米管(HDCNT)。从而提出OSW快速热解处置-污染物抑制-HDCNT制备的资源化途径。本项目拟重点研究复杂热解环境下代表性OSW的热解产物组成及形成规律;杂原子的转化与归趋及污染物的形成机制;污染物的控制方法;制备HDCNT的可行性及杂原子掺杂规律。此外,本项目还将建立一套适用于表征OSW快速热解过程的分析方法。本项目的成功实施将为OSW的环境友好回收和高值化应用提供科学依据和技术支持,具有重要的理论意义和环境价值。
有机固体废物(OSW)包括农业废弃物、城市垃圾、活性污泥等,其主要成分为木质素、纤维素、半纤维素、蛋白质等物质。本项目以代表性的OSW为研究对象,建立了快速准确的在线分析技术,获得较为详细的热解产物及中间产物组成,阐明了有机固体废物热解过程中的机制。在此基础上,利用热解气体制备了高附加值的寡层三维石墨烯泡沫和碳纳米管,相比较传统的化学蒸汽沉积方法,不仅降低了前体价格,而且充分利用了热解气余热;通过调控OSW氮源,制备了超级电容器材料(447 F/g);通过设计与优化镍基催化剂,原位催化制备合成气,锯末中氢的转化率达到86.9%,并显著提高一氧化碳产率。此外,开展了多项有机固体废物热解资源化研究。该项目的研究成果将为有机固体废物资源化利用提供基础支撑及拓展了应用范围。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
基于Pickering 乳液的分子印迹技术
固溶时效深冷复合处理对ZCuAl_(10)Fe_3Mn_2合金微观组织和热疲劳性能的影响
夏季极端日温作用下无砟轨道板端上拱变形演化
异质环境中西尼罗河病毒稳态问题解的存在唯一性
西南岩溶灌区农业湿地系统氮磷迁移转化和归趋研究
煤热解过程中轻质组分对有机硫变迁的作用机制
煤火硫的环境归趋
高产小麦氮-硫互作代谢和调控机制与氮硫营养利用