The embedded co-cured perforated damping layer composite structure is an innovative damping structure which has many advantages over a traditional damping structure such as anti-aging, not desquamation, long-life, less attachment mass and high damping under less stiffness loss. In future, it will be widely used in high technical fields like the aerospace and aeronautical industries. At the same time, the dynamic property of this pre-processing damping structure is one of the most important problems for the high speed equipment engineers to deal with. This project application is carried out to the question that theoretical investigation on this field has not been done yet. The dynamic equation of the embedded co-cured perforated damping layer composite structure is derived by using complex modulus and flexural displacement model, and the optimzation perforated distribution in damping layer is developed by employing the augmented Lagrangian multiplier method,topological sensitivty analysis method and finite element iterative method. The effects of geometric parameter on the stregth, stiffness and stability of this new damping structure are investigated in detial. The ultimate objective of this project is to develop a new design theory and method which can meet the needs of the embedded co-cured perforated damping layer composite structure under the synthetical consideration in many working conditions. The research model and optimization method will provide an important foundation for the design and manufacture of the light-weight,high-stiffness,great-damping and large-scale composite structure.
嵌入式共固化穿孔阻尼层的复合材料结构是一种新型复合材料阻尼处理模式,与传统阻尼形式相比它具有不脱落、抗老化、附加质量少、并能在很少降低整体结构刚度条件下大幅度地提高复合材料构件阻尼等优点,在航空、航天等高科技领域有着广泛的应用前景。同时这种事先阻尼处理结构的动力学性能也是高速运行设备的设计师们关心的关键问题之一。本项目正是针对目前国内外在这方面的理论研究几乎处于空白这一现实而展开,提出使用动态模量和分段连续位移模式建立嵌入式共固化穿孔阻尼层的复合材料结构动力学方程,发展利用增广乘子法和敏度分析法通过有限元迭代对该结构的阻尼开孔分布进行优化配置,探索阻尼薄膜的几何参数对该新型结构强度、刚度和稳定性的影响规律,最终目标是在综合考虑多种因素的基础上,研制一套能指导嵌入式共固化穿孔阻尼层的复合材料结构设计的基本理论与方法,为超轻、高刚度、高阻尼、大型复合材料构件的设计与制造奠定基础。
嵌入式共固化穿孔阻尼层的复合材料结构是一种新型复合材料阻尼处理模式,与传统阻尼形式相比它具有不脱落、抗老化、附加质量少、并能在很少降低整体结构刚度条件下大幅度地提高复合材料构件阻尼等优点,在航空、航天等高科技领域有着广泛的应用前景。同时这种事先阻尼处理结构的动力学性能也是高速运行设备的设计师们关心的关键问题之一。本项目正是针对目前国内外在这方面的理论研究几乎处于空白这一现实而展开,提出使用动态模量和分段连续位移模式建立嵌入式共固化穿孔阻尼层的复合材料结构动力学方程,发展利用增广乘子法和敏度分析法通过有限元迭代对该结构的阻尼开孔分布进行优化配置,探索阻尼薄膜的几何参数对该新型结构强度、刚度和稳定性的影响规律,最终目标是在综合考虑多种因素的基础上,研制一套能指导嵌入式共固化穿孔阻尼层的复合材料结构设计的基本理论与方法,为超轻、高刚度、高阻尼、大型复合材料构件的设计与制造奠定基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于被动变阻尼装置高层结构风振控制效果对比分析
基于改进LinkNet的寒旱区遥感图像河流识别方法
非牛顿流体剪切稀化特性的分子动力学模拟
血管内皮细胞线粒体动力学相关功能与心血管疾病关系的研究进展
基于SSR 的西南地区野生菰资源 遗传多样性及遗传结构分析
嵌入式共固化复合材料阻尼结构动力学特性研究
具有多种阻尼特性的泡沫金属夹芯复合材料结构的动态响应特性研究
高阻尼结构动态特性的予测及优化
固体发动机壳体树脂基复合材料与橡胶绝热层共固化特性研究