One of the main driving forces for silicon photonics today is silicon-based optoelec-tronic integrated circuits (OEICs), that is, integrating optoelectronic components, such as lasers,modulators, multiplexers, and detectors, into a single silicon chip. Silicon photonics has significant scientific research significance and value of the estate, the realization of silicon photonics will walk a broader and convenience photon era of the information society. An efficient silicon-based laser is the missing component for integrated silicon-based photonics. The main difficulty is that group-IV semiconductors, such as silicon (Si) and germanium(Ge), are indirect bandgap materials.As a result, group-IV semiconductors are usually poor light emitters.The realization of light emitters with a Si base is still challenging. The project focus on si-based laser for the demand of the silicon photonics chip future development, based on our more than ten years of technology accumulation on silicon epitaxy and light emitting devices of heterjunction materials research, based on energy band engineering theory, access to the direct bandgap Ⅳ group alloy material by stress and component regulation, study the band structure bandgap shift transition mechanism, analysis of the energy band structure of the laser gain the relationship between the carrier lifetime and recombination mechanisms, to extract quantitative relationship of the different structure parameters and laser performance, design and build a double heterojunction structure laser devices. Optimize the mechanism and method of materials epitaxy to access good quality device materials, optimization of the key process technology of new materials, to achieve silicon laser light source. And explore in silicon photonics systems integration and application of the theory of accumulation and technical support for the development of silicon-based photonic integrated chip.
硅基光子学的实现将会使信息社会步入更为广阔和便利的光子时代,目前硅基光子学的研究已成为目前一个国际上重要的科研领域,兼容于CMOS工艺的硅基片上光源的缺失成为了限制硅基光子芯片发展的一个核心问题。本项目针对硅基光子学未来发展中对片上光源的需求,以发展适用硅基片上集成系统应用的新型激光器件为目标,立足于我们十余年硅基异质材料外延和发光器件研究的技术基础,以能带工程理论为指导,通过组分、应力调节获得直接带隙的Ⅳ族合金材料,研究其能带结构、带隙偏移以及跃迁机制等特性,分析能带结构与激光器增益、载流子寿命以及复合机制的关系和规律,提取不同结构参数与激光器性能的量化关系,设计并构建其双异质结结构的激光器件。通过优化材料制备机理和方法,获得质量优良的器件材料,优化新材料体系的关键工艺技术,实现硅基激光光源。并探索其在硅基光子学系统的中的集成和应用,为硅基光子集成芯片的发展提供理论积累和技术支持。
课题紧密围绕Si基高效发光这一主要目标,基于能带工程,从硅基高效发光材料的理论设计、高效发光材料的制备和发光器件的研制优化等方面开展了系统深入的研究工作,通过能带工程,探索能带转变的新方式、新途径以实现硅基材料的能带调控;研究Si基GeSn及其异质材料的能带结构调控以及材料表面效应,开展新型发光材料器件的设计和增益调控相关理论研究,实现硅基激光器原型器件。完成了课题研究任务,包括:采用第一性原理对GeSn材料的光增益、载流子寿命以及阈值电流的做了系统的理论分析;理论建立了GeSn双异质结激光器的理论模型,模拟了其相关性能,设计了合适组分、结构的GeSn双异质结激光器的材料结构;外延制备了高质量的GeSn材料以及界面清晰的GeSn多量子阱材料,实现了高效电致发光。同时课题执行期间发表文章16篇,其中SCI收录文章15篇,授权专利3项;培养博士研究生4名。达到了预期研究目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
三级硅基填料的构筑及其对牙科复合树脂性能的影响
上转换纳米材料在光动力疗法中的研究进展
基于能带补偿的纳米硅/晶硅异质结电池的界面修饰与调控
超紧凑硅基/III-V族异质混合激光器基础研究
InP基异质结双极型晶体管激光器的研究
硅基异质结光电材料的界面结构与光电性能