Compressed sensing has been widely studied in recent years, but still faces many problems in real-world applications, such as the low-complexity reconstruction of high-dimensional signals. Conventional reconstruction algorithms, including convex optimization algorithms and greedy iterative algorithms, usually involve a great amount of operations on matrix multiplication and inversion, thus inefficient for high-dimensional signals. Recent studies have shown that the expander graph-based compressed sensing allows signals to be reconstructed with linear complexity and with better performance than conventional algorithms at low compression ratios, thus suitable for the compression of high-dimensional signals. Currently, the efficient construction of expander graphs remains a challenge. Common expanders are usually generated with random binary matrices, whose performance cannot be guaranteed. This project aims to provide a class of expanders with deterministic structure and explicit performance, and develop efficient reconstruction algorithms for such expanders.
压缩感知理论近年来已被广泛研究,然而在实际应用中仍面临诸多问题,如高维信号的低复杂度重建。传统的重建算法,如凸优化算法和贪婪迭代算法,一般都涉及大量的矩阵相乘和求逆运算,复杂度较高。近期研究表明,基于膨胀图的压缩感知能够实现信号的线性复杂度重建,并且其在低压缩率下的信号重建性能优于传统的重建算法,因而非常适合高维信号的压缩。目前,膨胀图的有效构造仍是一个研究难点。常用的膨胀图一般由随机二值矩阵生成,性能无法得到保证。本课题拟给出一类结构确定、性能良好的膨胀图,并结合其结构特征,给出高效的信号重建算法。
压缩感知理论近年来已被广泛研究,然而在实际应用中仍面临诸多问题,如高维信号的低复杂度重建。传统的重建算法,如凸优化算法和贪婪迭代算法,一般都涉及大量的矩阵相乘和求逆运算,复杂度较高。近期研究表明,基于膨胀图的压缩感知能够实现信号的线性复杂度重建,并且其在低压缩率下的信号重建性能优于传统的重建算法,因而非常适合高维信号的压缩。目前,膨胀图的有效构造仍是一个研究难点。常用的膨胀图一般由随机二值矩阵生成,性能无法得到保证。本课题给出了一类结构参数明确、理论性能良好的膨胀图,并结合其结构特征,给出了高效的信号重建算法。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
气载放射性碘采样测量方法研究进展
基于全模式全聚焦方法的裂纹超声成像定量检测
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
基于压缩感知理论的图象信息隐藏与伪装技术研究
谱图理论及其在压缩感知中的应用
基于压缩感知的点云数据压缩方法研究
基于压缩感知的信号恢复条件