组合矩阵论和组合网络理论

基本信息
批准号:19971086
项目类别:面上项目
资助金额:8.00
负责人:李炯生
学科分类:
依托单位:中国科学技术大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:徐俊明,侯耀平,张晓东,王平,尹建华,潘永亮,高玉斌,范益政,刘云凯
关键词:
矩阵组合论网络
结项摘要

The research project consists of several very much active topics in Combinatorial Matrix Theory, such as existence of matrices (extremal graph theory and degree sequences), spectral graph theory, sign pattern matrices, completely positive matrices, compact graphs, etc. Moreover, several.important parameters of Combinatorial Network Theory and optimal structures of double loop networks have been throughout investigated. In the past three years, 57 papers and a book on.interconnection networks have been published at home and abroad journals, 25 of which appeared in SCI journals. In Combinatorial Matrix theory, several variant classical Turán numbers of.extremal graph theory have been determined. These results develop and open new directions for extremal graph theory. On Laplacian matrices, a new invariant parameter, bounds for the second largest, k-th, the third, second smallest eigenvalues and the generalized Laplacian matrix of mixed.and signed graphs have been presented. Moreover, the Merris’ conjecture was confirmed. On the adjacency matrices, bounds for spectral radius of directed graphs are obtained and problems of.maximum (minimum) energy in chemical molecular graphs raised by Cvetkovic etc have been solved (partially). There are also breakthrough developments in sign pattern matrices, completely.positive matrices, normal Cayley graphs, L-sharp permutation groups. In combinatorial networks, the restricted vertex and restricted edge connectivity of transitive graphs and width-diameter, dominant number of some specific networks have been throughout studied. In general, the research has attained the lead level of the same kind international researches.

研究组合矩阵论中当今国际关注的几个重要问题;矩阵类存在性(或图的度序列)、谱图理论、符号模式矩阵、完全正矩阵、紧图和超紧图;组合网络理论中度量互连网络性能的几个重要参数:图的限制连通度、宽直径和(d,m)控制数等,和双环网络的最优结构。与图论、矩阵论、群论等数学分支联系密切。在计算机科学、物理、化学、经济学中应用广泛。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

跨社交网络用户对齐技术综述

跨社交网络用户对齐技术综述

DOI:10.12198/j.issn.1673 − 159X.3895
发表时间:2021
2

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

DOI:10.19701/j.jzjg.2015.15.012
发表时间:2015
3

城市轨道交通车站火灾情况下客流疏散能力评价

城市轨道交通车站火灾情况下客流疏散能力评价

DOI:
发表时间:2015
4

基于FTA-BN模型的页岩气井口装置失效概率分析

基于FTA-BN模型的页岩气井口装置失效概率分析

DOI:10.16265/j.cnki.issn1003-3033.2019.04.015
发表时间:2019
5

基于全模式全聚焦方法的裂纹超声成像定量检测

基于全模式全聚焦方法的裂纹超声成像定量检测

DOI:10.19650/j.cnki.cjsi.J2007019
发表时间:2021

李炯生的其他基金

批准号:19671077
批准年份:1996
资助金额:4.20
项目类别:面上项目

相似国自然基金

1

组合矩阵论

批准号:19671077
批准年份:1996
负责人:李炯生
学科分类:A0408
资助金额:4.20
项目类别:面上项目
2

组合矩阵论的理论和应用

批准号:10771080
批准年份:2007
负责人:柳柏濂
学科分类:A0408
资助金额:20.00
项目类别:面上项目
3

组合数学- - 组合矩阵论的研究

批准号:10526019
批准年份:2005
负责人:尤利华
学科分类:A0408
资助金额:3.00
项目类别:数学天元基金项目
4

组合矩阵论的研究

批准号:10331020
批准年份:2003
负责人:邵嘉裕
学科分类:A0408
资助金额:95.00
项目类别:重点项目