组合矩阵论和组合网络理论

基本信息
批准号:19971086
项目类别:面上项目
资助金额:8.00
负责人:李炯生
学科分类:
依托单位:中国科学技术大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:徐俊明,侯耀平,张晓东,王平,尹建华,潘永亮,高玉斌,范益政,刘云凯
关键词:
矩阵组合论网络
结项摘要

The research project consists of several very much active topics in Combinatorial Matrix Theory, such as existence of matrices (extremal graph theory and degree sequences), spectral graph theory, sign pattern matrices, completely positive matrices, compact graphs, etc. Moreover, several.important parameters of Combinatorial Network Theory and optimal structures of double loop networks have been throughout investigated. In the past three years, 57 papers and a book on.interconnection networks have been published at home and abroad journals, 25 of which appeared in SCI journals. In Combinatorial Matrix theory, several variant classical Turán numbers of.extremal graph theory have been determined. These results develop and open new directions for extremal graph theory. On Laplacian matrices, a new invariant parameter, bounds for the second largest, k-th, the third, second smallest eigenvalues and the generalized Laplacian matrix of mixed.and signed graphs have been presented. Moreover, the Merris’ conjecture was confirmed. On the adjacency matrices, bounds for spectral radius of directed graphs are obtained and problems of.maximum (minimum) energy in chemical molecular graphs raised by Cvetkovic etc have been solved (partially). There are also breakthrough developments in sign pattern matrices, completely.positive matrices, normal Cayley graphs, L-sharp permutation groups. In combinatorial networks, the restricted vertex and restricted edge connectivity of transitive graphs and width-diameter, dominant number of some specific networks have been throughout studied. In general, the research has attained the lead level of the same kind international researches.

研究组合矩阵论中当今国际关注的几个重要问题;矩阵类存在性(或图的度序列)、谱图理论、符号模式矩阵、完全正矩阵、紧图和超紧图;组合网络理论中度量互连网络性能的几个重要参数:图的限制连通度、宽直径和(d,m)控制数等,和双环网络的最优结构。与图论、矩阵论、群论等数学分支联系密切。在计算机科学、物理、化学、经济学中应用广泛。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

一种基于多层设计空间缩减策略的近似高维优化方法

一种基于多层设计空间缩减策略的近似高维优化方法

DOI:10.1051/jnwpu/20213920292
发表时间:2021
2

复杂系统科学研究进展

复杂系统科学研究进展

DOI:10.12202/j.0476-0301.2022178
发表时间:2022
3

基于MCPF算法的列车组合定位应用研究

基于MCPF算法的列车组合定位应用研究

DOI:
发表时间:2016
4

基于文献计量学和社会网络分析的国内高血压病中医学术团队研究

基于文献计量学和社会网络分析的国内高血压病中医学术团队研究

DOI:10.11842/wst.20190724002
发表时间:2020
5

具有随机多跳时变时延的多航天器协同编队姿态一致性

具有随机多跳时变时延的多航天器协同编队姿态一致性

DOI:10.7641/CTA.2018.70969
发表时间:2018

李炯生的其他基金

批准号:19671077
批准年份:1996
资助金额:4.20
项目类别:面上项目

相似国自然基金

1

组合矩阵论

批准号:19671077
批准年份:1996
负责人:李炯生
学科分类:A0408
资助金额:4.20
项目类别:面上项目
2

组合矩阵论的理论和应用

批准号:10771080
批准年份:2007
负责人:柳柏濂
学科分类:A0408
资助金额:20.00
项目类别:面上项目
3

组合数学- - 组合矩阵论的研究

批准号:10526019
批准年份:2005
负责人:尤利华
学科分类:A0408
资助金额:3.00
项目类别:数学天元基金项目
4

组合矩阵论的研究

批准号:10331020
批准年份:2003
负责人:邵嘉裕
学科分类:A0408
资助金额:95.00
项目类别:重点项目