Our previous investigation has proved that during circulatory shock, the cerebral microcirculation is preserved, which protects the brain from ischemic injury. Our group has also found that the cerebral microcirculation may completely cease during the most severe state of circulatory failure caused by cardiac arrest and gradually restore following cardiopulmonary resuscitation(CPR). We have also comfirmed that therapeutic hypothermia may improve the neurologic outcome after CPR, but the mechanism is still unknown.The first part of our current study is to establish the murine ventricular fibrillation cardiac arrest model,and investigate the effect of therapeutic hypothermia induced during or following resuscitation on the cerebral microcirculation.The cerebral microcirculatory perfusion, the microvascular endothelial cell apoptosis and apoptotic protein expression are going to be detected. In the second part of this study, the cerebral microvascular endothelial cells will be isolated and curltured to experience the ischemia/reperfusion and therapeutic hypothermia induced at different time point. The signal transduction pathway which regulate the cerebral micorvascular endothelial cell apoptosis during therapeutic hypothermia will be studied. The present research is aimed to demonstrate the pathophysilogical, cytological and molecular mechanisms of therapeutic hypothermia improving the cerebral microcirculation and therefore improving the neurologic outcome after CPR, and identify the optimal time point to induce hypothermia, which will help to make a better use of therapeutic hypothermia in cerebral resuscitation.
我们的前期研究已证实循环休克状态下,大脑皮质的微循环始终保持在基本正常的水平,使大脑免于缺血性损伤,但当大脑经历了心跳骤停这种极端的循环衰竭时,大脑的微循环可能停滞。前期研究还发现亚低温治疗能改善心肺复苏后的神经系统预后,但其机制尚未明确,且开始亚低温治疗的最佳时机尚待探索。因此,本研究拟在建立大鼠室颤所致的心跳骤停-心肺复苏模型后,研究不同时机(复苏过程中和复苏后)开始的亚低温治疗对复苏后大脑直径<20μm的微循环灌注、微血管内皮细胞凋亡和凋亡相关蛋白表达的影响,并通过体外培养大脑微血管内皮细胞模拟缺血/再灌注和亚低温过程,探索缺血/再灌注和亚低温状态下大脑微血管微血管内皮细胞凋亡的信号转导途径。本研究的结果可以从大脑微循环的病理生理层面、细胞和分子生物学层面明确亚低温治疗改善复苏后神经系统预后的血管机制,寻找开始低温治疗的更好时机,为更好的运用低温治疗实现脑复苏提供非常关键的科学依据。
目的背景及研究内容:.心脏骤停(CA)和心肺复苏(CPR)是典型且极端严重的缺血/再灌注(I/R)过程。亚低温治疗(TH)能改善CA患者自主循环恢复后的神经功能预后已经成为共识,但其机制仍不清楚。大脑微循环改善可能是其发挥治疗作用的机制之一。故本研究建立大鼠CA-CPR模型,研究了复苏过程中和复苏后开始亚低温对复苏后大脑微循环灌注、微血管内皮细胞凋亡和凋亡相关蛋白表达的影响,并通过体外培养大脑微血管内皮细胞(RBMEC)模拟I/R和亚低温过程,探索了I/R和亚低温状态下RBMEC凋亡变化及可能的信号转导途径。.结果数据:.心肺复苏后,亚低温组大鼠的大脑皮层微血管血流指数优于常温组(p<0.05);复苏6小时后亚低温组RBMEC凋亡指数低于常温组(p<0.01)、促凋亡蛋白Bax、caspase3表达均高于常温组(p<0.01),而凋亡抑制蛋白Bcl-2表达受到抑制(p<0.05);复苏后鞘氨醇激酶2(SphK2)的表达在亚低温组和常温组间无显著差异(p>0.05)。将TH开始时间提前到复苏中并未进一步改善上述结果(p>0.05)。体外实验发现,RBMEC在I/R损伤后细胞凋亡明显增加, Caspase 3、Bax表达增加, Bcl-2表达降低(p<0.05);TH能一定程度上抑制细胞凋亡,并逆转凋亡相关蛋白的表达变化(p<0.05)。但将TH开始时间提前至缺血时并不能进一步增强TH对细胞凋亡的抑制作用(p>0.05)。与常温组相比,TH能使I/R后RBMEC的CERs降低,S1P升高(p<0.05)。抑制SphK2后,I/R处理的RBMEC凋亡率较未抑制SphK2的细胞组显著增加(p<0.05),此时TH仍能对细胞凋亡起抑制作用(p<0.05),也仍可使促凋亡的CERs降低、抑制凋亡的S1P升高(P<0.05)。.结论及意义:.本实验条件下,CA-CPR后TH可能通过改变RBMEC的鞘磷脂类物质代谢(非SphK2催化途径)而影响凋亡相关基因表达,进而抑制RBMEC凋亡,改善心肺复苏这一严重缺血再灌注损伤对大脑微循环的影响。这可能是TH改善复苏后神经系统功能的原因之一。提前开始TH对大脑微循环状态和RBMEC凋亡的进一步改善作用不明显。本研究从大脑微循环的病理生理、细胞和分子生物学层面探讨了TH改善复苏后神经系统预后的血管机制,为更好运用TH提供了关键的科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
视网膜母细胞瘤的治疗研究进展
Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway
亚低温经AMPK信号通路调控心肺复苏后神经元自噬的机制研究
内皮素-1/NO系统在复苏后亚低温治疗时调节脑微循环血流的作用及机制研究
延迟亚低温联合硫酸镁促进心肺复苏后神经功能恢复及其机制的研究
亚低温影响心肺复苏后补体介导脑皮质神经细胞自噬与凋亡“分子对话”的机制研究