Studies on non-radiative energy transfer under light-matter strong coupling interaction are important to understand the novel physical and chemical properties of the materials which show great potential for application in many fields. It can break the strict requirements of the traditional donor-acceptor system and achieve the ultra-distance and ultrafast energy transfer. However, the physical mechanism of this phenomenon is not clear. Here, this project will mainly focus on the physics and application of the energy transfer via light-matter strong coupling based on the experiment and the theory: To build and develop several donor-acceptor systems under light-matter strong coupling hybrid state which will be excepted to get an in-depth understanding of the polariton contribution on non-radiative energy transfer. By adjusting the different donor-acceptor distances and the different strong coupling strengths, to further study on the relation between these parameters and the energy transfer efficiency, in order to establish and optimize the energy transfer model. By using of the composite system, to explore the difference and the relationship between the strong coupling energy transfer and the traditional way. The applicant published 38 SCI papers related to this project including 10 first author papers, which have been cited for more than 500 times. Two of these papers published in Angew. Chem. Int. Ed. were highlighted by Science in a full-page comment. These research results establish solid theoretical and experimental basis for further exploration.
基于光与物质强耦合相互作用的非辐射能量转移,可打破传统方式中对供-受体系统的严苛要求,实现超距、超快的能量转移方式,因此在物理、材料、生物等领域具有重要的研究价值。然而,这种方式的物理机理尚不清晰,需要深入的实验和理论模型进行分析。申请人拟构筑多种基于强耦合条件下的非辐射能量转移供-受体系统,通过利用Fabry–Pérot光学微腔和表面等离激元共振模式,深入研究耦合强度与能量转移效率之间的关系。同时,通过精确控制供-受体间距,设计并制备与传统非辐射能量转移方式相结合的复合体系,探讨基于强耦合模式下的能量转移与传统方式之间的区别与联系,揭示强耦合条件下非辐射能量转移的物理机制。申请人长期从事相关方面的研究,共发表SCI论文38篇,他引近500次,其中一作论文10篇,包括两篇被Science期刊专文评论的Angew.Chem.Int.Ed.等,为深入探索奠定了坚实的实验和理论基础。
基于光与物质强耦合相互作用的非辐射能量转移,可打破传统方式中对供-受体系统的严苛要求,实现超距、超快的能量转移方式,因此在物理、材料、生物等领域具有重要的研究价值。然而,这种方式的物理机理尚不清晰,需要深入的实验和理论模型进行分析。申请人构筑了多种基于强耦合条件下的非辐射能量转移供-受体系统,通过利用Fabry–Pérot光学微腔和表面等离激元共振模式,深入研究耦合强度与能量转移效率之间的关系。同时,通过精确控制供-受体间距,设计并制备与传统非辐射能量转移方式相结合的复合体系,探讨基于强耦合模式下的能量转移与传统方式之间的区别与联系,揭示强耦合条件下非辐射能量转移的物理机制。此外,申请人通过光与物质强耦合相互作用,获得了全量子方法的非经典可调谐光源。发表与项目相关论文10篇,为未来深入探索量子化的光与物质相互作用奠定了坚实的实验和理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
论大数据环境对情报学发展的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
非均匀高辐射热流条件下吸热器光热耦合特性研究
应力调制下II-VI族纳米材料光学特性及光-物质强耦合研究
局部扩散与非局部扩散强耦合系统的传播特性
强相互作用物质、色超导夸克物质与强耦合夸克物质性质研究