As the material of wind tunnel and nuclear power pipeline, narrow gap welding has obvious advantage in joining of low temperature 9%Ni martensitic stainless steel. However, narrow gap welding technology is a simple transplant of single arc energy, which ignores the problem of sidewall fusion caused by the strong thermal conductivity of thick plate structure materials. The cumulative component segregation caused by the single arc heating and solidification process is difficult to avoid, resulting in the significant reduction of component performance. In order to meet the demand of high-quality and reliable connection of thick plate, magnetically controlled TIG welding is proposed to realize the reasonable distribution of arc energy in the sidewall and bottom of narrow gap by applying alternating magnetic field. Based on the basic physical process of magnetic control energy field, the project establishes the energy coupling and microstructure evolution model, and studies the evolution of nonequilibrium structure, solidification behavior, metal flow of molten pool and wetting behavior. The exploration of welding metallurgy reaction can reveal the mechanism of dendrite fragmentation and fine grain strengthening by external magnetic field. The above research can solve the bottleneck of thick low temperature martensite stainless steel welding, and realize high-quality and efficient connection of large wind tunnel and nuclear power components.
作为风洞及核电站主管道材料9%Ni低温马氏体不锈钢在焊接过程中采用窄间隙具有显著的优势,但目前窄间隙焊接技术多是单一电弧能量的简单移植,忽视了厚板结构材料导热强而造成的侧壁熔合问题,同时难以避免单一电弧加热凝固过程造成的累加式成分偏析,导致构件性能大幅降低。针对厚板低温马氏体不锈钢窄间隙的高质可靠连接需求,提出基于磁控TIG复合焊接新方法,以交变可控磁场施加在焊接空间,实现电弧能量在窄间隙的侧壁与底部合理分布。项目从磁控能场的基本物理过程出发,建立磁控窄间隙焊接能量耦合模型与焊接接头组织演变模型,研究多场作用下非平衡组织调控演变过程及凝固行为、熔池磁致流动与润湿的本质,通过磁场能量对焊接冶金反应的作用机理的探索,揭示外加能场对枝晶破碎及细晶强化机制,突破磁控电弧-工艺参数-温度场-微观组织-力学性能协同控制等关键技术,解决厚板低温马氏体不锈钢焊接瓶颈问题,实现风洞及核电构件的优质高效连接。
针对低温风洞大型构件高质量焊接难题,以0Cr13Ni5Mo超级马氏体不锈钢为研究对象,在窄间隙GTAW的基础上采用磁控技术,实现优质高质量焊接。鉴于马氏体不锈钢是铁磁性材料,实现磁控电弧下厚壁结构的焊接的关键是合理的磁极结构设计。采用试验与模拟相结合的方法,掌握了铁磁性窄间隙内的磁场分布特性,在此基础上,设计了可覆盖电弧摆动的磁场参数的异型含隙磁路装置,搭建了磁控窄间隙TIG焊接平台。.研究了马氏体不锈钢窄间隙磁控电弧形态,及电弧压力特征,揭示了摆动电弧的传热机制。铁磁性环境下,磁场参数影响电弧传热,通过高速摄像,研究了受控电弧下熔滴过渡行为及熔池流动,掌握了磁控焊接参数与焊缝成形之间的关系;进一步采用侧壁润湿试验,验证了熔体润湿性与侧壁未熔合之间的联系,并揭示了磁致电弧剪切力、电弧压力和表面张力对熔体于窄间隙侧壁的作用。探讨了多物理场下焊缝成形机理及特种环境下能场间的耦合关系,最终明确励磁频率、焊接电流为焊缝成形的主要、影响因素。.研究了磁控窄间隙焊接工艺参数下马氏体不锈钢的热循环曲线,分析了常规焊接与磁控焊接下热循环曲线的差异特征,由于磁致摆动电弧在窄间隙内的能量重新分配,导致磁控焊接下熔融焊缝金属的冷却速度小于常规焊接。摆动电弧作用下,焊缝中马氏体板条特征依然明显,但马氏体基体尺寸却小于常规焊接。在摆动电弧作用下,焊缝金属中的元素分布更加均匀。多道焊接时,马氏体不锈钢焊道之间存在自热处理过程,导致前道焊缝中马氏体板条明显细化。相邻焊道的自热处理过程对于晶粒细化会有重要影响,但并不会引起焊缝中第二相奥氏体体积分数的明显增加。.基于优化后的焊接与磁场工艺参数,获得了无未熔合、气孔等缺陷的40mm 厚马氏体不锈钢磁控焊接接头。通过组织与性能表征,焊缝中、底部层具有良好的综合力学性能,顶层抗冲击能力较差。良好的综合力学性能归因于累积晶粒细化效应与奥氏体体积分数的增加。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
钢筋混凝土带翼缘剪力墙破坏机理研究
极地微藻对极端环境的适应机制研究进展
结直肠癌肝转移患者预后影响
2A66铝锂合金板材各向异性研究
交变磁场下窄间隙GMAW焊接热源稳定性及焊缝成形调控机制研究
基于辅助电弧热力调控的高速TIG焊接熔池行为及焊缝成形缺陷抑制机理
主辅丝协同控制的单电弧窄间隙焊接方法及机理
超声耦合厚壁铝合金窄间隙摇动电弧GMA焊缝组织均匀性及气孔抑制