The only effective and widely used clinical intervention to extinguish ventricular fibrillation is cardiac electric defibrillation. While, the mechanism of cardiac defibrillation is still not clear so far, and a satisfied defibrillation method with a high efficacy is still not worked out yet,especially the frequent occurrence of inapporaite electric shocks in clinic. It is generally accepted that an electric defibrillation to be successful is highly dependent on the delivered shock energy, the discharge instant and the current density distribution throughout the whole heart. With the current problems in clinc practice both of the external defibrillation and the internal defibrillation, this proposal presents a new approach of patienti-specific cardiac defibrillation mainly to overcome inapporaite electric shocks and dissatisfactory therapic efficacy,by combinning mechanism studies of cardiac defibrillation and quantitative estimation of the defibrillation efficacy. More importantly, three key technologies needed by a precision defibrillation shock will be explored in detail. First, an computer-based interactive simulation method for patient-specific planning of an implantable cardioverter defibrillators (ICD) placement will be developed to assist surgical doctors to virtually implant defibrillator and electrode and before surgery. Second, a smart shock wave with adaptive wave parameters will be developed by according to the patient’s thoracic impedance so as to reduce inapporiate and/or redundant defibrillations and save energy. Third, an smart shockable rhythm detection method with time-frequency characteristics of patient’s electrocardiograms will be also explored, in order to increase the performance of current alogrithm and decrease wrong and/or leak shocks for such an automatic defibrillator as ICD or automatic external defibrillaotr (AED). As such, an expected good agreement between theorical studies on mechanism and experimental validations in pigs/dogs would come out a novel patient-customized defibrillation treatment method with a smart low-engery and full-automation shock. In conclusion, this approved proposal and subsequent research achievements would have theoretical and clinical values for us to better understand the physiologic mechanisms of cardiac fibrillation and improve the applicability of cardiac defibrillation, and to potentially resolve current clinical problems of patient-spicific internal defibrillation and external defibrillation for unskilled pablic, finally to obtain a higher defibrillation efficacy in patient and offer the doctor a higher operation satisfaction.
心脏电除颤是临床上唯一可靠并被广泛使用的室颤转复方法。然而,心脏除颤机制至今不明,除颤效果仍不够理想,不恰当亦放电时有发生。电击除颤时,放电能量、放电时机及除颤电场在心脏区域的分布状况等直接决定着一次除颤成功与否。本项目结合体外和体内电除颤方法的临床应用难题,从减少不恰当放电和提高除颤治疗效果的角度开展除颤电场作用机理与除颤效能量化评估研究,并着重探讨患者个体化精准除颤放电的三项关键技术:即基于患者个体模型的术前除颤仿真及放电路径优化规划;通过测量患者胸阻抗和对放电波形自适应匹配,精准控制和降低除颤能量;结合心电时-频域特征分析及患者心律自学习感知,精准判定放电时机;再通过动物实验论证,建立起一套患者个体化的低能量、全自动心脏电击除颤治疗新方法。将本项目的研究成果回归用于实践,有助于解决现有体内除颤器植入个性化和体外除颤器使用公众化所遇到的相关难题和挑战,具有重要的科学意义和应用价值。
心脏电除颤是目前临床上唯一可靠并被广泛使用的室颤转复方法,可以有效避免和防止心脏猝死。心脏除颤时,放电能量、放电时机及除颤电场在心脏区域的分布状况直接决定着一次除颤成功与否,因此减少不恰当放电和提高除颤治疗效果具有重要的临床实际意义。本项目针对除颤放电过程中的电极配置、心律感知及刺激强度控制等关键技术问题,研究心脏除颤中更为深层次的生物电刺激场作用机律及除颤电流回路模型,进而设计一套量化的心脏除颤效能评估方法及患者个体化的心脏除颤放电技术。研究获得以下成果:①基于宏观生物电磁学,从除颤电流场患者个体化分布的角度揭示了心脏除颤的生物电场机理,研发了一套心脏电除颤仿真评估与术前植入模拟实验软件平台,在术前规划ICD除颤电极体内植入模式和预设放电参数,实现患者个体化心脏除颤放电路径优化及除颤效能量化预估;②基于工程生物电子学,从患者胸阻抗差异性和室颤心律复杂性的角度阐释心脏除颤过程中的两项不恰当放电关键技术因素,开发了一套基于机器学习和胸阻抗检测的全自动心脏除颤技术,自动准确识别可电击心律并根据患者胸阻抗进行低能量除颤放电;③利用机器学习方法分析长时程动态心电信号和捕捉恶性心律失常心电图学征兆,开展了心脏猝死早期预警的探索性研究,为预防医学领域提高除颤干预效率和减少心脏猝死提供理论依据和技术支持。这些研究成果能够为心室(心房)颤动的电除颤治疗提供新的思路和理论基础。项目执行期间,在国内外重要学术期刊和国际学术会议上发表论文25篇,其中:国外学术期刊论文16篇,国际学术会议分组论文9篇,SCI检索14篇,申请中国发明专利8项,已获批准授权3项。在国际及国内学术会议做特邀学术报告10余次。培养博士研究生1名、硕士研究生12名及指导博士后2名(来华留学生共4名),其中1名博士和7名硕士生已毕业。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宽弦高速跨音风扇颤振特性研究
动物响应亚磁场的生化和分子机制
不同交易收费类型组合的电商平台 双边定价及影响研究
计及焊层疲劳影响的风电变流器IGBT 模块热分析及改进热网络模型
心脏电除颤建模与仿真及除颤电极系统的优化研究
心室纤颤的螺旋波发生机制及除颤方法的研究
浦肯野纤维在不同病变心脏并发心室颤动及其除颤中的电生理作用机制
胸外按压优化决策与抗按压干扰除颤节律辨识算法研究