In the new media environment, the dissemination and diffusion of information not only poses new challenges to public opinion control and national security, but also brings unprecedented opportunities for enterprise marketing and brand building. The new media platform has the characteristics of cross-platform communication, strong comprehensiveness and complex information, which makes the information dissemination process affected by many factors. It is very difficult to study information dissemination from the perspective of communication alone. In order to solve this problem, this project integrates communication and information system with communication science, and creatively constructs a complex network with two-tier structure and two-way communication characteristics, which takes resources and users as nodes. In order to simulate the real transmission process of information between resources and users, an intelligent information dissemination model is constructed by using Agent theory to reproduce the dynamic growth process of the network, which plays a key role in the relationship between resources and users. In order to study the role of different factors in information dissemination, a six-degree separation cascade model SDCM is established by using six-degree separation theory. Then the node influence evaluation method is designed and the calculation scheme of influence maximization are put forward. The research results of this project are very in line with the needs of information dissemination analysis in the new media environment, and provide important theoretical support for the research of complex network theory in the field of information dissemination, which has very good practical significance.
在新媒体环境下,信息的传播和扩散不仅对舆情管控和国家安全提出了新的挑战,也为企业营销和品牌建立带来了前所未有的机遇。新媒体平台具有跨平台传播、综合性强,信息错综复杂等特点,使得信息传播过程影响因素众多,单纯从传播学角度对信息传播进行研究十分困难。为了解决这一难题,本项目将通信与信息系统与传播学交叉融合,创造性地构建出以资源和用户两类对象为节点具有双层结构和双向通信特点的复杂网络。为了模拟信息在资源和用户间真实传播的过程,利用Agent理论构建出智能化信息传播模型,复现出网络的动态生长过程,为资源和用户的关联起到关键作用;为了研究不同影响因素在信息传播中的作用,利用六度分隔理论创建六度分隔级联模型SDCM,设计出节点影响力评估方法,并提出影响力最大化计算方案。本项目的研究成果非常符合在新媒体环境下对信息传播分析的需求,为复杂网络理论在信息传播领域的研究提供重要的理论支撑,具有很好的现实意义。
新媒体环境下信息的传播和扩散对舆情管控和国家安全提出了新的挑战,也为企业营销和品牌建立带来了前所未有的机遇。本项目重点研究基于复杂网络理论的信息传播模型的构建,以及节点影响力的度量方法和影响力最大化等问题,主要研究内容包括:首先,构建具有双层结构和双向通信的特点的复杂网络模型;其次,创建基于Agent的智能化的信息传播模型;最后,提出基于六度分隔理论的节点影响力评估方法及影响力最大化计算方案。本项目基于复杂网络相关理论建立的信息传播模型及节点影响力的研究结果,有助于认识现实世界中舆论、谣言、舆情甚至疾病、知识等各类信息在复杂网络结构中相互作用、交连耦合的传播的本质特征,同时以期为复杂网络在信息传播领域的研究提供一些探索性的理论成果。本项目的研究成果可以为智能决策提供重要的理论支撑,进而产生更多应用价值,例如增强传播效果,开展用户分群、小众传播、精准营销、智能推荐、舆情分析等有益的应用探索。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
跨社交网络用户对齐技术综述
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
网络高传播影响力节点挖掘方法及传播控制策略研究
动态复杂网络中节点影响力的可预测性研究
基于节点信息伪装的复杂网络抗毁性增强方法研究
基于社交网络文本交互内容的信息传播建模及网络关键结构发现