High-performance memristive media are key parts for next generation of memory. To develop such materials meets the requirements of National Long-Term Science and Technology Development Plan (2006-2020), but it is still challenging because the current memristive materials have inadequate performance and unclear mechanism. The emerging Crystalline Metal Organic Materials (CMOMs) show exceptional promise in memristive media due to their structural and chemical tunability. CMOMs can provide abundant structural information to visualize the proton medium within pores and to reveal their specific proton transport pathway via diffraction experiments, and can make better memristive media design enabled via further adjustment and functioalization. But there are some serious issues for current CMOMs memristive media: low ON/OFF ratio and slightly large set voltage. From the viewpoint of structure design, this project propose several avenues to target such high-performance memristive media: (1) Hydrogen proton with small ionic radius and high electromigration rate is employed as current carriers to reduce the set voltage; (2) Various functionalization approaches to modify the CMOMs, including the skeleton, wall and pore are proposed to achieve a non-continuous but passable proton transport pathway to enlarge the ON/OFF ratio. Non-water proton carriers are proposed to gain increasing retention performance for the memristive media; (3) Coupling the memristors with some specific function of molecular materials, such as chirality and optical characters, will endow the CMOMs materials to combine some unprecedented properties like self-rectifying effect and light-assisted proton transport, which will further to enhance the memristors’ overall performance. Once it is achieved, we would build up the rules of the relationships between the structures of CMOMs and the memristive performance. This kind of CMOMs could show high ON/OFF ratio, low set voltage and long retention time as long as we adjust the hosts and guest medium via the post-synthetic functionaliztion of the CMOMs. Once the project is completed, we may publish 8 - 10 peer-reviewed papers in decent journals and file 2-3 patents.
高性能忆阻介质是新一代存储器核心技术,其研发符合《国家中长期科学技术发展规划纲要》的需求。现有忆阻材料因性能不足、机理不明无法满足实际应用需求。新兴的晶态金属有机材料(CMOMs)作为忆阻介质在结构调控、性能调节和机理研究上彰显优势,但存在存储窗口值小、设置电压稍大等问题。本项目从结构设计出发,针对性展开CMOMs功能修饰和高性能化研究:①以半径小、电迁移率大的氢质子为载流子,降低设置电压;②提出孔道结构功能化、载流子媒介物功能化等方法,设计非连续但可传递的稳定质子通道,提高存储窗口值,增长保持特性;③耦合分子化合物手性、光学等功能特性,赋予材料兼具整流或光控的新功能,提升忆阻综合性能。建立CMOMs忆阻介质构性关系规律,解析忆阻机理;通过反馈式合成,优化材料,构建存储窗口值大、设置电压低、保持特性长的CMOMs忆阻材料。预期申请专利2~3项,发表SCI论文8~10篇。
高性能忆阻介质是新一代存储器核心技术,其研发符合《国家中长期科学技术发展规划纲要》的需求。现有忆阻材料因性能不足、机理不明无法满足实际应用需求。新兴的晶态金属有机材料(MOFs)作为忆阻介质在结构调控、性能调节和机理研究上彰显优势,但存在存储窗口值小、设置电压稍大等问题。为此,我们从结构设计出发,开展系列工作:①基于分叉型氢键的MOFs忆阻介质,得到首例兼具整流和阻变效应的单一材料FJU-23;②基于二维聚索烃,得到共振氢键诱导交替堆叠苯甲酸π通道切换的高性能忆阻介质FJU-2;③基于光照条件下无限π堆积传输通道趋于更加紧密,提升金属-有机骨架FJU-67的光电导性;④基于孔空间分割,发展MOFs分离挑战性混合气的结构双功能优化新方法;⑤基于多核簇的孔空间分割和柱支撑合并的新策略,发展新颖的结构可调的MOFs,FJU-6。建立MOFs忆阻介质构性关系规律,并通过发展原位的单晶测试技术、XPS、理论计算等手段解析忆阻机理;获得多例存储窗口值大、设置电压低、保持特性长的晶态忆阻材料。通过项目四年的建设,已在Sci. Adv.、JACS、Adv. Mater.、ACS Appl. Mater. Inter.、Cryst. Growth Des.、Inorg. Chem.等期刊发表论文48篇,授权发明专利6件。承办和协办国内会议6次,作为组委会副主席组织中国化学会第15届固态化学和无机合成学术会议。受邀参加中国化学会年会等会议作邀请报告12场次,邀请国内外同行专家来访讲学94人次。负责人入选福建省高校领军人才资助计划青年拔尖人才,于2019,2020年度连续入选Clarivate化学领域全球高被引科学家。所负责的团队入选福建省研究生导师团队和福建省高等学校科技创新团队。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
拥堵路网交通流均衡分配模型
基于二维材料的自旋-轨道矩研究进展
感应不均匀介质的琼斯矩阵
高压工况对天然气滤芯性能影响的实验研究
新型金属有机框架(MOFs)材料及其在忆阻器应用方面的研究
忆阻阈值模型及忆阻应用电路特性研究
金属氧化物忆阻器超高速行为与机理研究
金属/导电氧化物点接触忆阻器的阻变行为调控