Removal of dysfunctional or damaged mitochondria has been considered to be an important strategy to protect dopaminergic neurons and prevent Parkinson's disease.. Theacrine (Tc), a purine alkaloid obtained from Camellia assamica var. kucha, has been selected for preclinical study due to its potent protective effect against MPTP-induced Parkinson's Disease in mouse. The mechanisms through which Tc protects dopaminergic neuron, however, remain elusive. Our preliminary data have shown that Tc could activate mitochondrial deacetylase Sirt3. In addition, Tc treatment facilitated the externalization of CL from the inner mitochondria membrane to the outer leaflet of the outer mitochondrial membrane. Recent discoveries have highlighted that externalized cardiolipin (CL) on outer mitochondria membrane functions as "eat-me" signal for mitophagy. Moreover, Tc enhanced mitophagy in dopaminergic neurons challenged with neuron toxin rotenone. Our central hypothesis is that, by activating Sirt3, Tc enhance mitophagy by modulating phospholipid scramblase 3 (PLS3)/Nucleoside Diphosphate Kinase D (NDPK-D)-dependent CL signaling pathway and therefore protect dopaminergic neurons against mitohocndrial oxidative damage. To test the hypothesis, mitochondrial respiratory chain complex I toxins-induced cell and mouse PD disease models will be utilized. We will employ RNA interference-based loss-of-function study and Signaling Pathway Analysis to explore the involvement of Sirt3, PLS3 and NDPK-D in the neuroprotective effect of Tc. We will establish novel Liquid chromatography-mass spectrometry and MALDI imaging mass-spectrometry to analysis the distribution of CL on inner and outer mitochondrial membrane and assess the mitochondria mass in vivo. Using Confocal Fluorescence Microscopy and Transmission Electronic Microscopy, we will further investigate the degree to which modulation of CL signaling affect the Tc-induced mitophagy. Finally, using a TPP-conjuction, we will selectively target Tc to mitochondria, the site of action, to explore the molecular mechanisms of the neuroprotective effects of Tc. Based on the highly innovative concept that CL is unique signal for mitophagy in Tc-treated dopaminergic neuron, the present project will open new avenues for developing non-dopamine targeting anti-Parkinson's Disease drug.
通过自噬清除受损线粒体来保护多巴胺能神经元,是治疗帕金森病(PD)的重要策略。特咖宁(Tc)是本课题组从苦茶中分离的专利化合物,治疗小鼠PD药效显著,已入选国家重大新药创制临床前候选药物,并解决药源问题,但作用机制未明。在体外实验中,我们发现Tc可以激活线粒体Sirt3酶,促进自噬信号分子Cardiolipin(CL)外翻介导线粒体自噬,从而保护多巴胺能神经元。本项目拟建立线粒体损伤的细胞和动物PD模型, 采用线粒体靶向载体实现Tc在线粒体富集,研究其对多巴胺能神经元的保护机制。我们拟建立MALDI-IMS质谱成像等新方法来检测线粒体中CL分子的变化,采用RNAi等技术研究Sirt3对CL翻转酶PSL3/NDPK-D的影响,结合荧光共聚焦和电镜技术全面解析Tc对线粒体自噬的调控分子机制。本项目有望阐明Tc抗PD的作用靶点与机制,为研发安全、有效、具知识产权保护的新型抗PD药物提供科学依据。
帕金森病(Parkinson's disease, PD)是一种常见的神经退行性疾病,目前无有效的治疗方法,因此亟需研发高效、新型、副作用小、能保护多巴胺能神经元的抗帕金森病药物。本课题组前期发现从苦茶植物Camellia assamica var. kucha中分离并纯化的一种具有与内源性神经调质腺苷结构相似的天然嘌呤生物碱类化合物特咖宁(Theacrine)有望开发成新型抗PD药物。本项目在解决天然嘌呤生物碱theacrine化合物来源的基础上,本研究分别以PD动物和细胞模型作为研究对象,采用动物行为学、免疫组织化学染色法、高效液相色谱-电化学检测法、通过酶联免疫吸附法(ELISA)、蛋白免疫印迹法(Western blotting)等技术和方法观察theacrine预处理对神经毒素诱导的动物和细胞模型多巴胺神经元损伤是否有保护作用全面评价特咖宁theacrine抗PD药效,并且解析其作用机制可能与线粒体保护有关。研究结果有望为研发安全、有效、具知识产权保护的新型抗PD药物提供科学依据。取得以下成果:以通讯作者在Theranostics(IF=8.537)、Redox Bio(IF=7.126)、Metabolism(IF=5.963)、Free Radical Bio Med(IF=6.326)、Mol Neurobiol(IF=6.190)等期刊发表19篇SCI论文,其中项目基金号第一标注11篇,第二标注8篇;2中文核心期刊,均为第一标注。申请5个中国发明专利。培养博士毕业2人,硕士毕业5人,本科毕业生8人。国际学术会议报告 4次。
{{i.achievement_title}}
数据更新时间:2023-05-31
氧化应激与自噬
血管内皮细胞线粒体动力学相关功能与心血管疾病关系的研究进展
石萆汤对弱精子症患者精子线粒体膜蛋白PHB及超微结构的影响
栀子苷对RAW264.7细胞胞饮和噬菌功能双向调节作用的初步观察
miR-145体内转染对小鼠骨关节炎模型的影响
溶酶体在多巴胺能神经元损伤的自噬流保护机制中的作用
自噬/溶酶体途径在多巴胺能神经元死亡中的作用及药物干预
Ang-(1-7)通过改善多巴胺能神经元的自噬障碍减轻帕金森病α-syn病理的机制研究
迷迭香酸对帕金森病多巴胺能神经元保护作用的分子机制研究