Future situational networks will be realized by the multi-point, high-density wireless interconnections between persons, devices and machines.The multi-point, long-term available, high-density wireless links can establish real-time information exchanging between different cyber spaces. This may leads to knowledge learning, processing, decision and collaboration so that human-like reactions might be generated. In this way, dynamically adaptable network environments with associated smart applications/services could be provided. Design approach to novel wearable antennas and propagation models for multi-point body-area links are the key scientific issues to establish situational networks. However, as wireless systems evolving toward high-frequency bands, wireless interconnections may suffers from short range coverage of wearable antennas, high propagation loss, and lack of versatile body-area propagation models. Based upon the research progress of the applicant in wearable antennas and body-area propagation characteristics, and motivated by the requirements of situational networks as well, innovative synthesis design approach to body-worn, multi-eigenmode resonant antennas, and modelling methods of multi-point, body-area radio link characteristics will be investigated in this proposal. The proposal will be carried out under the technical background of smart healthcare networks (i.e., an exemplary application of situational networks). At first, a prototype dipole antenna would be evolved into a microstrip patch antenna. Then, multiple eigenmodes would be suitably excited and a synthesis design approach to wearable, multi-resonant patch antennas will be developed. The developed wearable antennas will be applied in the body-area radio link measurements. Next, universal body-area propagation model and multi-point (i.e., single-point-to-multi-point and multi-point-to-multi-point) wireless channel models will be established and studied. Finally, a general multi-point, body-area wireless channel simulator will be developed and implemented. The methodology proposed in this proposal is general, and it covers all aspects in the foundation of situational networks. The developed antenna design approaches, universal propagation models and channel simulators are expected to provide useful guidelines to the spectrum management/regulation, radio link budget, modulation/demodulation as well channel coding/decoding schemes, and transmission protocols development in future situational networks.
未来情景网络通过多点无线链路实现人、机、物之间的高密互联,形成不同信息空间之间多点信息交换而产生类人化的知识学习、处理决策和协作控制,构建动态适变的网络服务环境。新型可穿戴天线设计及多点体域无线链路特性测量建模是实现长期有效的高密无线互联、构建情景网络的关键科学问题。然而随着无线通信向高频段演进,体域链路损耗大且缺少通用传播模型,对可穿戴天线设计及多点体域信道建模均提出了新挑战。本项目依托申请人现有研究基础,以智能健康网络为研究背景,首先揭示本征模多谐贴片天线的设计规律,充分融合其宽带、低剖面等优点,形成可穿戴多本征模天线的正向综合设计方法,然后借助新型可穿戴天线精确测量体域无线链路特性,建立8-12GHz频段通用多点分布式体域信道模型,最终形成体域衰落信道仿真器。本项目旨在形成情景网络中可穿戴天线设计及多点体域信道建模的通用研究方法,对推动其物理层和网络层的后续设计工作具有重要意义。
本项目依托申请人完成的前一个国家自然科学基金项目的研究基础,以情景网络为应用背景,深入探索多模谐振天线的模式综合设计方法,研制新型可穿戴天线,然后用其测量并构建新型体域路径损耗、时延扩展和相干带宽模型。在模式综合天线设计法的探索过程中,实现了具有多模谐振特性的斜波束圆极化天线、零向频率扫描天线、宽波束扇形振子天线、背射增强贴片天线等一系列新型多模谐振天线,并首创了多模谐振天线的广义奇偶模理论、形成了多模谐振天线的统一理论框架,进而探明了漏波型和谐振型微带天线的演化过渡规律。采用模式综合天线设计法研制了高性能可穿戴贴片天线,用于室内环境的体域无线传播特性测量,建立了室内环境的新型多天线离体传播模型和信道模型,包括室内人员密度因子的双斜率传播模型、考虑用户手握效应的MIMO信道模型等新型体域传播和信道模型。项目研究成果为情景网络的无线覆盖、频段规划与管理、干扰控制、信号与协议设计等后续工作奠定理论与实践基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
跨社交网络用户对齐技术综述
基于多模态信息特征融合的犯罪预测算法研究
面向云工作流安全的任务调度方法
城市轨道交通车站火灾情况下客流疏散能力评价
基于FTA-BN模型的页岩气井口装置失效概率分析
智能环境网络中的穿戴式传感天线与体域传播特性研究
体域网生物医学用植入式天线及无线传播信道建模研究
面向无线体域网的可穿戴式传感器和信号处理的研究
碳纳米材料电磁特性表征及可穿戴式天线设计