The third-generation semiconductor InGaN excellent and efficient light - electric conversion material (70%) and resistance to radiation. However, due to epitaxial growth single crystal substrate is difficult to expand the size and reduce costs as well as conventional preparation technology limitations of existing InGaN solar cell efficiency is very low (3%). The project for national development cost efficient solar cell technology combined with demand for optoelectronic devices research and development trends and existing advantages. Materials designed and prepared, through the design of new metal directional nucleation crystal layer (such as a-Hf) to break through the glass substrate is not suitable for preparation of the InGaN material growth theory, the perfect combination of a large area of low-cost amorphous glass substrate and efficient long-life InGaN solar cell materials. Emphasis on micro-nano structure and surface interface, the mask pattern as a filter of dislocation defects of glass substrate micro-and nano InGaN materials and InGaN quantum dots in an orderly controllable preparation process combining, based on the quantum dot intermediate band and multi-exciton have an effect developed p-i-n-type hexagonal pyramid structure of InGaN-based quantum dots full spectrum solar cell (efficiency 10%). Development of new glass substrate InGaN-based solar cell material systems and device design and preparation methods, and to lay the theoretical foundation for research and development of a new generation of large-area low-cost, efficient and environmentally friendly solar cells.
第三代半导体InGaN是优异高效光-电转换材料(70%以上)且耐辐照。但受限异质单晶衬底难扩大尺寸和降低成本以及常规制备工艺技术局限现有InGaN太阳电池效率极低(3%)。本项目面向国家发展低成本高效太阳电池技术需求,结合国际光电器件研发趋势和既有优势。以材料设计制备为基础,通过设计新型金属定向成核结晶层(如a-Hf)突破玻璃衬底不适合制备InGaN材料生长理论,实现大面积低成本非晶玻璃衬底与高效长寿命InGaN太阳电池材料完美结合。重视微纳结构和表面界面研究,将微纳掩模图形对玻璃衬底InGaN位错缺陷过滤作用与InGaN量子点有序可控制备工艺相结合,基于量子点中间带和多激子产生效应研制p-i-n型六角金字塔结构InGaN基量子点全光谱太阳电池原型器件(效率10%以上)。发展新型玻璃衬底InGaN基太阳电池材料体系和器件设计制备方法,为研发新一代大面积低成本高效环保太阳电池奠定理论技术基础
第三代半导体InGaN是优异高效光-电转换材料(70%以上)且耐辐照。但受限异质单晶衬底难扩大尺寸和降低成本以及常规制备工艺技术局限现有InGaN太阳电池效率极低(3%)。本项目面向国家发展低成本高效太阳电池技术需求,结合国际光电器件研发趋势和既有优势。以材料设计制备为基础,通过设计新型金属成核结晶层(如a-Zr或a-Hf)突破玻璃衬底不适合制备InGaN材料生长理论,实现大面积低成本非晶玻璃衬底与高效长寿命InGaN太阳电池材料完美结合。重视微纳结构和表面界面研究,将微纳掩模图形对玻璃衬底InGaN位错缺陷过滤作用与InGaN量子点有序可控制备工艺相结合,基于量子点中间带和多激子产生效应试制p-i-n型InGaN量子点全光谱太阳电池原型器件。取得的研究成果如下:(1)利用磁控溅射工艺实现了过渡族难熔金属a-Zr和a-Hf薄膜高度单一择优取向高质量生长;(2)利用过渡族难熔金属做为成核结晶层实现玻璃衬底上的GaN材料膜层致密高结晶质量生长;(3)利用低温钝化法和应力诱导法,采用MOCVD工艺制备得到单层和多层低In组分InGaN量子点材料,但多层InGaN量子点尺寸较大有序度较差;(4)提出了一种InGaN量子点小尺寸有序可控制备新方法;(5)提出了一种利用大尺寸GaN同质衬底和玻璃基底设计制备低成本高效环保的InGaN量子点全光谱太阳电池器件新方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
特斯拉涡轮机运行性能研究综述
内点最大化与冗余点控制的小型无人机遥感图像配准
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
新型InGaN量子点太阳能电池制备及相关物理问题研究
面向新型绿光发光器件的非极性InGaN量子点材料生长技术研究
InGaN基量子点/量子阱复合结构的外延生长及光学性质的研究
InGaN量子阱材料的应力调控及背照射结构太阳电池研究