Artificial casting freshly concrete is an extensive process in normal engineering projects. The lean construction idea of structure, however, has been restricted by man-made concreting process due to its random vibration craft and lack of academic instruction and, resulting in poorly construction quality control. So, based on conceive of artificial-vibration information of pouring concrete which can be acquired by wearable-equipment and transmitted to remote for visualization as well as feedback to decrease the defaults , there are several key issues will be solved within this research item. Firstly, according to physics modelling tests, numerical simulations and parameters inversions, the meso-mechanics of vibrated energy dissipation and damp diffusion of granules based on kinetics theory as well as the macro-viscoplasticity model of vibrated concrete mixture will be put forward. Secondly, the vibrating-dense, quantitative and evaluated model of freshly concrete will be build considering restrain of reinforced bar and real formwork in situ. Thirdly, the precisely three dimensional attitudes and locations of vibrator during vibrating processing could be solved based on ergonomic, GNSS-RTK combined inertia measurement manner and self-innovative multi wearable-equipment system while concrete is cast. Fourthly, judge of the vibrating status (In or Out) can be research and developed according to noise’s Kalman filtering and Nyquist power spectrum identification of vibrator. Furthermore, to utilize greedy algorithm and compress sensing method, the robust fusion of multi-source heterogeneous information can be achieved. And finally, an artificial concreting information management patterns, which fused casting process flaw within long-distance visualization and feedback navigation through cloudlet and BIM, would be realized and verified by practice on real projects. The item strive to structure a integrated system, that is, Digital Vibrated Process (DVP), Wearable Communicated Network (WCN), Qualitative Evaluated Visualization (QEV) and Defect Feedback Control Precision (DFCP). The purpose of this research is to support the methodological and theoretical breakthrough of “Wisdom construction” in situ, also it can provide an innovative and fused approach for multiple subjects.
普通混凝土现场浇捣工艺粗放,人工作业随意性强、振捣密实缺乏理论指导,效果精细可控性差,缺陷隐患难根除,质量处理很被动。为此,项目研究基于“智能穿戴采集人工振捣工艺量化信息,构建远程可视化实时馈控”构想,拟通过模型试验与仿真分析,研究基于动理学与分形动力学的拌合物颗粒体振动耗能与阻尼扩散细观机理,提出考虑复杂施工约束的振捣工艺密实评判量化模型;基于人体工学、GNSS-RTK结合惯性测量和自研多感知工人穿戴设备,解决振捣棒体三维精准定姿定位;研发噪音卡尔曼波及奈奎斯特功率谱,判别振捣状态;运用贪婪算法及压缩感知,实现多源异构振捣工艺信息鲁棒性融合;最终开发云服务融合BIM远程可视与实时馈控缺陷的智信化施工管理技术,并应用于验证工程。项目力求构建振捣工艺数字化、穿戴通讯网络化、质量评判可视化及缺陷馈控精细化的集成系统,为“智慧施工”理论与方法突破提供支撑,为多学科融合施工技术创新提供方法。
项目背景:传统人工振捣混凝土施工工艺存在漏振、欠振与过振等工艺偏差问题,质量效果完全依赖个人经验判断;即便拌合物工作性控制良好,因浇捣动作随机、操作缺乏定量化标准,导致密实性难以准确掌控,此外,振捣工效评价缺少科学依据,缺陷误判和漏判严重削减了混凝土工程质量提升和长期安全保障能力。尽管信息化在水电行业的机械式浇筑混凝土工艺中已有成功研究应用,但人工浇捣质量如何客观评价和高效精细监管却一直困扰着现场技术与管理;浇筑工艺信息化难题尚未破解,成为制约混凝土结构精益施工关键技术瓶颈。鉴于此,开展基于可穿戴模式的混凝土数字化精细施工方法研究。.项目主要研究了(1)构建现实环境下新拌混凝土振捣密实机理和量化评价模型理论方法;(2)研发人工振捣的智能型可穿戴设备;(3)提出多源异构参数化浇捣信息通讯融合与鲁棒性识别方法;(4)建立BIM+云服务模式的振捣工艺缺陷可视化与反馈控制系统。.项目研究重要成果:(1)基于多因素耦合研究混凝土振捣密实机理,提出了采用硬化孔隙率作为混凝土振捣密实性评价指标方法;(2)分析了振捣棒作用半径扩散影响因素,构建了振捣棒在素、钢筋混凝土中作用半径理论预测模型;(3)建立了硬化混凝土最小孔隙率预测模型与混凝土内振动能量传递模型,实现了量化评价混凝土振捣密实质量;(4)研发了人工振捣智能穿戴设备及振捣棒插拔状态识别装置,实现了振捣位置、振捣时长等多源异构工艺参数采集与通讯传输;(5)提出了基于AutoCAD/OpenGL施工期三维建模方法,并开发了基于BIM模型的振捣密实质量可视化系统。.项目意义:上述研究,旨在创建智信化人工浇筑混凝土工艺与质量控制方法,可望破解混凝土精益施工难题,具有重要里程碑意义和显著的工程应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
中国参与全球价值链的环境效应分析
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
数字化施工下高土石坝施工期性态精细分析与实时馈控研究
基于实时监控的高碾压混凝土坝施工进度控制理论与方法研究
基于多目标优化的悬浇施工混凝土拱桥构形与安全控制的理论与方法
高强度混凝土结构基本性能.设计方法与施工工艺的研究