基于放疗计划常规CT深度特征提取的高精度低剂量CBCT成像方法研究

基本信息
批准号:81871433
项目类别:面上项目
资助金额:25.00
负责人:张怀岺
学科分类:
依托单位:广东医科大学
批准年份:2018
结题年份:2021
起止时间:2019-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:谢耀钦,张地,梁荣,梁晓坤,黎国锋,林勤
关键词:
特征提取低剂量锥束CT散射修正
结项摘要

Cone beam CT radiation causes injury to the patient and increases the incidence of many diseases, such as secondary cancer during imaging guided radiation therapy. In addition, due to the usage of large area detector, the reconstruction image artifact is serious, which affects the precise treatment of tumor. The key problem to be solved in this field is the proper method to improve the quality of the reconstructed image while reducing the dose of the patient's exposure. This project is designed to use deep convolution neural network, and innovatively put forward to achieve low dose reconstruction and image scatter artifact correction. Based on the partial projection data reconstruction and scatter correction method which have been solved in our clinical study previously, Encoding-Decode depth network is applied to extract the depth features between the prior planning CT data and cone beam CT data. The beam blocker is applied to reduce the patient’s radiation dose and correct the scatter artifacts. The new quantitative and low-dose new image guided radiotherapy methodology and technology developed in this project are expected to provide key technical support for achieving high precision and low dose of adaptive image guided radiotherapy.

在影像引导放射治疗中,CBCT辐射对病人造成伤害,提高了二次癌症等疾病的发病率。此外,由于大面积探测器的使用,重建图像伪影严重,影响肿瘤的精确治疗。如何在降低病人受照剂量的同时,提高重建图像质量是本领域亟待解决的关键问题。本项目创新性地采用深度卷积神经网络实现低剂量重建与图像散射伪影校正。基于我们在临床上已经实现的不完全数据精确重建与散射伪影消除方法,采用Encoding-Decoding深度网络对先验计划CT数据和CBCT数据进行深度特征提取;采用射束阻挡器降低病人受照剂量,同时对图像伪影进行修正。本项目提出的高精度低剂量成像方法,有望为实现高精准、附加剂量低的自适应影像引导放疗提供关键技术支撑。

项目摘要

在影像引导放射治疗中,锥束CT(CBCT)辐射对病人造成伤害,提高了二次癌症等疾病的发病率。此外,由于大面积探测器的使用,重建图像伪影严重,影响肿瘤的精确治疗。剂量高和图像质量差一直是限制CBCT在临床广泛应用的瓶颈问题。深度学习理论为突破这一瓶颈提供了崭新的解决方案,其中如何高效地提取计划CT中的深度特征是这一理论能成功应用的根本保障。本研究提出采用射束阻挡器结合深度卷积神经网络,实现低剂量重建与图像散射伪影校正。具体包括:1)研究基于深度卷积神经网络和自适应滤波的高精度低剂量CBCT成像;2)提出基于射束阻挡器的高精度低剂量CBCT成像;3)提出基于无监督学习的CBCT伪影消除技术;4)提出结合投影域与重建域的CBCT条状伪影消除技术。在病人影像数据上,CT值的误差降至20 HU以下。本项目提出的高精度低剂量成像方法,有望为实现高精准、附加剂量低的自适应影像引导放疗提供关键技术支撑。本项目已经发表了SCI期刊论文6篇,会议论文4篇,授权发明专利4项,已培养或正在培养的博士/硕士研究生4名。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于MPE局部保持投影与ELM的螺旋锥齿轮故障诊断

基于MPE局部保持投影与ELM的螺旋锥齿轮故障诊断

DOI:10.13382/j.jemi.B1902452
发表时间:2020
2

高庙子钠基膨润土纳米孔隙结构的同步辐射小角散射

高庙子钠基膨润土纳米孔隙结构的同步辐射小角散射

DOI:10.14062/j.issn.0454-5648.2019.10.13
发表时间:2019
3

极区电离层对流速度的浅层神经网络建模与分析

极区电离层对流速度的浅层神经网络建模与分析

DOI:10.6038/cjg2022p0255
发表时间:2022
4

仿生气动肌纤维静态特性建模与实验研究

仿生气动肌纤维静态特性建模与实验研究

DOI:10.16183/j.cnki.jsjtu.2020.092
发表时间:2021
5

分数阶常微分方程的改进精细积分法

分数阶常微分方程的改进精细积分法

DOI:10.21656/1000--0887.390355
发表时间:2019

张怀岺的其他基金

相似国自然基金

1

基于深度特征学习的快速低剂量CT成像

批准号:61871117
批准年份:2018
负责人:陈阳
学科分类:F0125
资助金额:63.00
项目类别:面上项目
2

基于深度学习的低剂量显微CT高质量成像方法研究

批准号:61871126
批准年份:2018
负责人:罗守华
学科分类:F0125
资助金额:67.00
项目类别:面上项目
3

基于常规X光源的相位衬度CT成像方法研究

批准号:10774144
批准年份:2007
负责人:朱佩平
学科分类:A2201
资助金额:50.00
项目类别:面上项目
4

自适应放疗中CT和信息缺失CBCT图像快速变形配准方法的研究

批准号:81301940
批准年份:2013
负责人:甄鑫
学科分类:H1816
资助金额:23.00
项目类别:青年科学基金项目