Quantum Cascade Detector (QCD) is a new type of photovoltaic infrared detector, in which a carefully designed extraction cascade, which is adapted to the longitudinal optical (LO) phonon energy, leads to one-way direction electron transport and thus photovoltaic response. This working principle determines their advantages of low power consumption,low noise,and high operation temperature. In addition, with the aid of mature Ⅲ-Ⅴ material growth and device technology, QCDs share the advantage of material uniformity, reproducibility, and yield, over a large area. Thus QCDs are very promising candidates and competitors for the third generation FPA thermal imaging applications. Yet QCDs suffers from one shortcoming - low responsivity, which limits their performance improvement and practical application. Designing novel and high-efficiency coupling structure to enhance absorption is an important way to overcome this deficiency and of great significance. On the other hand, metamaterials allow for near-unity absorption and strong electric field enhancement in their vicinity, making them well suited to be used as novel and high-efficiency coupling structure and enhance light absorption. This provides a new idea to design high-efficiency coupling structure. This project will promote the theory design and device processing study on absorption enhancement of QCDs based on metamaterials. Near zero reflectivity of incident light and strong electric field enhancement in detector absorption area can be obtained due to metamaterials, which will greatly enhance light absorption and responsivity of QCDs and help to fabricate high performance QCDs.
量子级联探测器(QCD)是借助纵光学声子能量台阶实现光激发电子单方向输运,完成光伏模式探测的新型红外器件,它具有无暗电流、低功耗、低噪声、高温工作等优势,同时能够借助成熟Ⅲ-Ⅴ族材料生长和器件工艺,是第三代红外焦平面器件有力候选者和竞争者。但QCD存在响应率低的不足,限制了其性能提高和实际应用。利用新型高效耦合结构增强光吸收,是克服这一不足的重要手段,具有重要意义。另一方面,超材料具有共振吸收增强和电场分量局域的特性,在用作耦合结构,增强光吸收方面具有天然优势,这为设计新型高效耦合结构提供了契机。本项目拟将超材料的独特性质应用于QCD耦合增强吸收,开展超材料理论设计和工艺制作研究,将超材料和探测器集成,通过共振耦合,将入射光近乎无反射的耦合进入探测器结构,通过电场局域增强和双面金属波导作用,将光场限制在探测器吸收区,极大增强光吸收,提高QCD响应率,研制高性能QCD器件。
量子级联探测器(QCD)是借助纵光学声子能量台阶实现光激发电子单方向输运,完成光伏模式探测的新型红外器件,它具有无暗电流、低功耗、低噪声、高温工作等优势,同时能够借助成熟Ⅲ-Ⅴ族材料生长和器件工艺,是第三代红外焦平面器件有力候选者和竞争者。但QCD存在响应率低的不足,限制了其性能提高和实际应用。利用新型高效耦合结构增强光吸收,是克服这一不足的重要手段,具有重要意义。另一方面,超材料具有共振吸收增强和电场分量局域的特性,在用作耦合结构,增强光吸收方面具有天然优势,这为设计新型高效耦合结构提供了契机。本项目主要开展了将超材料的独特性质应用于QCD耦合增强吸收相关的理论设计和工艺制作研究,将超材料和探测器集成,通过共振耦合,将入射光近乎无反射的耦合进入探测器结构,通过电场局域增强和双面金属波导作用,将光场限制在探测器吸收区,增强光吸收,提高QCD响应率,研制出高性能QCD器件。经过本项目开展,构建了完整的FDTD仿真模型,对超材料微结构形状和尺寸与耦合波长和光场分布的关系进行了系统的理论研究;形成了超材料结构和双面金属波导结构制作的成熟工艺,完成了超材料耦合器件工艺制作和器件测试。研制的双开口超材料微结构耦合器件,相较于45度角边耦合器件,在11.3微米获得了160%的响应率增强;设计了采用斜跃迁微带耦合结构的高性能量子级联探测器结构,该结构能够有效减小跃迁电子的回填几率,提高量子效率,改善性能;基于InP基的InGaAs/InAlAs材料体系,MBE外延生长获得了外延材料,并制备了10微米45度角边耦合器件,在77K下,实现了92.3mA/W的响应率,相较于传统量子级联探测器结构,响应率获得了数量级的提升。本项目解决了超材料结构应用于增强量子级联探测器耦合吸收中,探测器有源区结构设计、超材料微结构理论设计和器件制作中存在的关键问题,为充分发挥量子级联探测器超低噪声电流的优势,并将其应用于空间红外天文学、天基红外预警、对地红外观测等需要超低噪声红外探测器的领域提供了技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
甚长波红外量子级联探测器基础研究
等离激元耦合腔量子阱红外探测器的偏振耦合增强研究
中红外量子级联超辐射发光管的研制
非致冷正入射吸收量子点中、远红外探测器